AMD CUSTOMER EDUCATION

ED2900A

INTRODUCTION TO

DESIGNING WITH THE

Am2900 FAMILY OF

MICROPROGRAMMABLE
BIPOLAR DEVICES

LECTURE
VOLUME |







ED2900A

INTRODUCTION TO DESIGNING WITH THE Am2900 FAMILY
OF MICROPROGRAMMING BIPOLAR DEVICES

Volume I

3rd Edition

January 1985
Advanced Micro Devices, Inc.
Customer Education Center

ADVANCED MICRO DEVICES {1






Volume 1

Table of Contents

Educational Objectives
Introduction

Bit-slice Architecture

Microprogramming
Am2900 Family of Microprogrammable Devices
Analyzing and Designing a Computer Control Unit (CCU)
Adding Program Control Flow to a CCU
Improving CCU Speed

Further Improvements in Microprogram Control Flow
CCU Implementations Using Am2900 Family Devices
Supersequencer Am2910
Microprogrammed Sequencers Am2909/2911

Next-Address Control Am29811
Microsequencer Am29112

Microcycle Timing for Am2910

ADVANCED MICRO DEVICES 1






1-10

ED2900A 1-10

INTRODUCTION TO DESIGNING WITH THE Am2900 FAMILY

OF MICROPROGAMMING BIPOLAR DEVICES

EDUCATIONAL OBJECTIVES

Understanding the digital-computer, machine-instruction
sequencing process (macro level) and associated architecture
at the lower level (micro level).

Appreciation of digital-computer control-unit organization
for machine-instruction sequencing and its implementation
with Am2900 family devices.

Appreciation of digital-computer, arithmetic/logic unit (ALU)
organization and its implementation with Am2900 family devices.

Understanding microprogramming terms (mnemonic programming
at the micro level).

Understanding Am2900 family support devices for constructing
an instruction sequencing system at the micro level.

ADVYANCED MICRO DEVICES 1



1-20 ED2900A 1-20

ADVANCED MICRO DEVICES 1



1-30 ED2300A 1-30

INTRODUCTION

WELCOME TO THE WORLD OF MICROPROGAMMING AND THE Am2900 FAMILY

ADYANCED MICRO DEVICES Q1



1-40 ED2900A 1-40

ADVANCED MICRO DEVICES <1



1-50

£D2900A 1-50

ED2900A EDUCATIONAL GOALS

" Introduction to the Advanced Micro Devices (AMD) Am2900 family
of devices and their use., "
DAY 1
e Introduction to bit-siice architecture, microprogramming,
microprogram sequencers (controllers) and their use.
DAY 2
¢ Study of arithmetic/logic units (ALUs), their use (algorithms)
and interfacing to sequencers
DAY 3

® Analysis of support chips for systems support and specialized
applications:

Devices for dealing with interrupts
Register expansion for ALU's
Registered PROMs for ALU's

Shift and status control devices
Microprogrammablie clocks

16-bit and 32-bit AlLUs

ADVANCED MICRO DEVICES O



1-60

EARLY
1960s

LATE
1960s

1970s

1980s

ED2900A 1-60

TECHNOLOGY TRENDS

SMALL SCALE INTEGRATION (SSI), 2-10 GATES PER CHIP.

NAND gates

NOR gates

XOR gates

NOT gates (inverters)
Individual flip-flops (storage)
256-bit RAM

MEDIUM SCALE INTEGRATION (MSI), 20-100 GATES PER CHIP.

Registers/Latches
Decoders/Encoders
Multiplexers

Adders/ Comparators
Arithmetic/Logic Units
1K-bit RAM

LARGE SCALE INTEGRATION (LSI), 200-500 GATES PER CHIP.

RALU-Arithmetic/Logic Unit (ALU) with registers
Interrupt controller/Direct Memory Access controller
Microprogram sequencer/Macro program controller
Memory controller/Input-Output controller
Microprocessors

16K-bit RAM

VERY LARGE SCALE INTEGRATION (VLSI), MORE THAN 1000 GATES.
16-bit Bipolar and MOS ALUs

16 and 32-bit Bipolar and MOS microprocessors
Multi-mode arithmetic on expandable RALUs

Special Data Manipulation (FFT, Signal processing, 000)
256K-bit RAM

ADVANCED MICRO DEVICES <t



1-70

ED2900A

Example of Bipolar Speed/Density Improvements

Am2901 FOUR-BIT MICROPROCESSOR SLICE

1-70

540 GATES
800mwW IMTEET
40-PIN DIP oy
DIE Am2901 Am2901A Am2901B Am2901C
SIZE 33,000 MILS? 20,000 MILS? 15,000 MILS2 15,000 MILS?2
SPEED
A.B G,P 80ns 65ns 50ns 37ns
LOW-POWER DUAL LAYER PROJECTION  ECL INTERNAL
TECHNOLOGY SCHOTTKY METAL ION- PRINTING TTL I/O
IMPLANTATION IMOX
1975 1977 1978 1981

ADVANCED MICRO DEVICES ¢



1-80 D2900A 1-80

TECHNOLOGY TYPES

(see Am2900 Family Data Book and Figure on next page)

“ OF WHAT IS THE ACTUAL SEMICONDUCTOR CHIP MADE? "

o BIPOLAR - Earliest technology
Fastest technology
Transistor-Transistor Logic (TTL)
Emitter-coupled Logic (ECL)
Ion-implanted oxide-isolation (IMOX)
TTL external/ECL internal

IMOX used in Am2900 family

s MOS - Developed later than Bipolar
Higher chip density
Slower speed relative to Bipolar Technology

Used in microprocessor chips (e.q. Intel 80286, Z8000)

PROBLEM

How do you build a large circuit (e.g. a microprocessor)
with bipolar speed if it won't fit on a single chip?

SOLUTION

Use a bit-slice architecture!

ADVANCED MICRO DEVICES



1-90

10.000

10

ED2900A 1-90

Bipolar Density Improvements

Am2900 Bipolar LSI/VLSI

Am29116
~ SSILMS! FAMILIES (2500 GATES)
T - GOLD DOPED Am2903 P |
S = SCHOTTKY (630 GATES /
| L = LOW-POWER SCHOTTKY ol am2010
A = ADVANCED SCHOTTKY 17 7 736 GATES)
:‘ Am2901
(540 GATES) A
— L LLLLLL A
L
Lottt A A A
S L
L L A
S L S sts A, A
s Lot A
TT T S s
j I N S I D [ DN B | hedd
1965 1970 1975 1980

“Moore’s Law"”

Moore's Law - Gates/chip increases by a factor of four

approximately every two years.

ADVANCED MICRO DEVICES <1



1-160

ED2900A 1-100

BIT-SLICE ARCHITECTURE

Since chip density is limited, a small processor chip
(typically four bits wide) is made in such a way that
several of these chips can be hooked together as building
blocks to make a larger (8-, 16-, 24-, 32-, 64-bit)
processor. This is defined as bit-slice architecture.

This hardware implementation requires special features to
handle problems like carry overflow, sign bit, etc. that
involve data movement between slices.

Note that the term microprogramming has not yet been defined.
Microprogramming and bit-slice are two separate concepts,
although they are closely related in most of the Am2900
family. Bit-slice generally refers to the structure of
various devices and how they are connected. Microprogramming
concepts involve the method by which these devices and others
are controlled.

ADVANCED MICRO DEVICES &1



1-110 ED2900A 1-110

16 BIT ADDER/REGISTER

16-BIT INPUT

| 4-BIT 4-BIT 4-BIT 4-BIT
y |REGISTER REGISTER REGISTER REGISTER

iy Bl Rl T SR B et TS

16-BIT OUTPUT

ADVANCED MICRO DEVICES &t



1-120 ED2900A 1-120
1 e S SO

THERE ARE THREE BASIC IMPLEMENTATION CHOICES (LEVELS):

) SSI/MSI Hardware
[ Bit-slice (LSI/VLSI) "Firmware"*
0 MOS Microprocessors (LSI/VLSI) Software

* "0"s and "1"s stored in a Read-Only Memory (ROM)

ADVANCED MICRO DEVICES ¢t



1-130 ED2900A 1-130

USE BIT SLICES TO BUILD SYSTEMS

e MACHINES WITH LONG WORD LENGTHS

16, 24, 32, 36, 64 bit words and beyond

e MACHINES WITH SPECIAL MACRO LEVEL INSTRUCTION SETS

Emulators - such as Nanodata QM-1

MIL STD 1750 computers

Controllers

e FAST MACHINES - 100ns cycle times

Real-time data control

Real-time complex arithmetic

ADVANCED MICRO DEVICES &1



1-140

FIXED INSTR.

4,8, or 16 bit
fixed

FIXED INSTR.

3-6

FIXED INSTR.

pre-determined

FIXED INSTR.

pre~-determined;
primitive

FIXED INSTR.

cheapest:
use 9080A
whenever
possible

ED2900A

WORD LENGTH

I

—f

SLIC

m

|

any multiple
of 4

1-140

SSI/MSI

any length

CHIP COUNT FOR SIMPLE SYSTEM

™
-
w

IT SLIC

m

30-60

ARCHITECTURE

(=
—f
o

IT SLIC

M

|
|

largely user
defined

INSTRUCTION SET

user-defined
in firmware

CONCLUSIONS

BIT SLICE
use whenever
high speeds and/or
unigue instructions
are needed

SSI/MSI

100-500

SSI/MSI

completely
user defined

SSI1/MSI

user-defined
firmware/
hardware

SSI/MSI

fastest: use
Schottky MSI where
very high speed
is a must

ADVANCED MICRO DEVICES <\



1-150

ED2900A 1-150

IF YOU'RE GOING TO BUILD A BIPOLAR MACHINE, YOU SHOULD USE

LSt

o LSI reduces costs (less chips and connections)

o LSI improves reliability (fewer total pins)

IF YOU'RE GOING TO BUILD A BIPOLAR MACHINE IT SHOULD BE

MICROPROGRAMMED INSTEAD OF USING HARDWARE LOGIC

(Microprogramming is a level above hardware logic)

® Etasier design, using application-specific variable names
and operations

o Easier implementation
o Etasier testing
e CEtasier maintenance

o Better documentation (easier to understand)

ADVANCED MICRO DEVICES {1



1-160

Note:

ED2900A 1-160

MICROPROGRAMMING

In order to appreciate the position of the microprogramming level
(micro level) in systems design consider the ...

HIERARCHY OF COMPUTER ALGORITHM DESCRIPTIONS/LANGUAGES

Higher-order languages (compiler/interpreter translators)

Lower-order languages {assembler translators)

Machine language (macro level)

Register-transfer languages-RTL (microprogramming)

Boolean algebra (symbolic logic - state diagrams)

Logic levels (timing diagrams - waveforms)

One can design, implement and test algorithms on any one
or more of the above levels, the choice depending upon
application and constraints. Specific languages at each
level are used to define a desired algorithm as well as
its implementation. Various design approaches using some
of the above languages are employed in this course.

ADVANCED MICRO DEVICES 1



1-170 ED2900A 1-170

MICROPROGRAMMING IS A TECHNIQUE FOR

DESIGNING COMPUTER CONTROL UNITS (CCUs) FOR CONTROLLERS

® Instead of defining information movements and manipulations
in terms of Boolean algebra, they are described on a higher
symbolic level using register and arithmetic/logic operation
designations (register transfer language-RTL). With
Boolean algebra, all hardware operations are described at
the logic level. RTL permits a more concise description
of the desired process using names and operations reflective
of the original design process.

() Initially consider computer control as an example of a
microprogrammed architecture, i.e.

Computer
Control
i Unit
| (CCU)
jqji_duﬁﬁw
D
L
| - Arithmetic/ !
Memory E;f‘ LT SN Logic |
; Unit :
ALY
(AL)

ADVANCED MICRO DEVICES O



1-180 ED2900A 1-180
O

MICROPROGRAMMING DEFINITIONS

° Using a register transfer language (i.e. microprogramming)
to define desired information movements and operations
permits the system to be developed with a hierarchical
modular (chip and firmware~RTL) structure. For example,
ALU bit-slice chips are given a coded CCU command, such as
ADD Register 2 to Register 1. The ALU bit-slice chips then
execute the operation internally with the CCU not having to
control the exact step by step addition process

() Microprogramming then consists of defining in an encoded
fashion using system variables (registers/variables operations),
a step-by-step process of information movement and manipulation.
The mnemonic microprogram is then decoded into zeros and ones
and is put into a PROM. Each line statement or sequence of
ones and zeros of the PROM program is sent to the ALU or other
system chips under clock control for proper sequential execution.

Microcode

110100010

010101011 bit patterns control
001100111 individual logic gates
110011000

ADVANCED MICRO DEVICES O



1-190 ED2900A 1-190
L

GENERAL MICROPROGRAMMED ARCHITECTURE

MACROINSTRUCTIONS
COND ‘
-1 CODE cc
MUX Am2910 p—g—— CLOCK

-1 1 SEQUENCER

MICROPROGRAM

MEMORY
|
DATA/ADDRESSES
PIPELINE
REGISTER I
Am2901A
ALU
@it
STATUS
REGISTER

ADVANCED MICRO DEVICES &1



1-200

£ED2900A

1-200

|
FROM DATA BUS CL?PCK
T TION
mmzpgn | Nar LS
MAPPING
{PROM OR PLA} PROM
OTHER
ADDRESS
SOURCES
° e
Py
(2-3 Am2909As CONTROL ] &
OR Am29114s SEQUENCER LOGIC
OR Am2910A} (PROM, SSI) STATUS
: _— REGISTER
v cp (Am2818} v N 2
2.
t - Ji ®
 —
3 FROM DATA BUS
A cP i DATA
| aecister
(o
MICROPROGRAM ~408ITS
MEMORY !
(PROM) ___> BA cP ] Cnsa
256 TO 4k WORDS i3 PIPELINE a
N REGISTER : ovR
- ALU Fy
cn
M Fx0
1 Microinstruction currently being executed J
2 Sequencer control lines select source of T(SJYO?E*:’R TO DATA BUS PRY%GRAM
n . . s K I
next microinstruction address ELEMENTS MO OR M Ay
L . ie g ENABLES ON ADDRES
3 Next microinstruction address MAR (R DR) ODRESS RECISTER
4 Next microinstruction {}
5 Status bits from current microinstruction 10
h . . ADDRESS
6 Status bits from last microinstruction BUS

ADVANCED MICRO DEVICES &1




1-210 ED2900A 1-210

TRADITIONAL HARDWIRED CCU:

FROM MEMORY

INSTRUCTION REGISTER

DECODE LOGIC

L

NS

GENERATOR COMBINATIONAL
NETWORK

COMPLEX
TIMING SEQUENTIAL/

ek

TIMING CONTROL
CONTROLS SIGNALS
TO SYSTEM
‘MICROWORD’

ADVANCED MICRO DEVICES &1



1-220

ED2900A 1-220

HARDWIRED CCU

Advantages

May be faster solution (execution time)
Custom designed for the specific problem

May be smaller (part count and size)

Justification

Suitable if design is rigid or fixed
for high volume production

Disadvantages

Lengthy design time with Boolean algebra descriptions
(logic equations)

Bulky documentation - long parts lists, detailed
logic schematics, etc.

Any changes require partial or total redesign
Pin count, board space high

Board may have very limited modular structure
(modularity in design layout is difficult)

Testing difficult - minimization effort is difficult

Debug at logic level is more complex than for
LSI sclutions

ADVANCED MICRO DEVICES ¢l



1-230 ED2900A 1-230
THE SIMPLEST CONTROL UNIT
CCU - Computer Control Unit
LOAD NEXT ADDRESS
ON RISING EDGE OF
CLOCK SIGNAL
REGISTER —— CLOCK
MICROMEMORY
ADDRESS
PROM
NEXT
ADDRESS \/

TIMING CONTROL

SIGNALS TO SYSTEM

ADVANCED MICRO DEVICES &1



1-240 ED2900A 1-240
| s

MICROPROGRAMMED CCu:

e CCU memory, usually programmable read-only memory (PROM),
contains a sequence of "microinstructions"
e Each microinstruction contains two parts:

- microinstruction sequencer portion contains CCU
memory address of next word

- controller portion contains control bits
for system
Advantages
e Design now becomes a programming effort (software
engineering)
e Development time shortened with appropriate tools
e Major documentation contained in program listings
o Changes may require little or no redesign
e Part count small (mainly memory)
e Modular, structured techniques can be easily applied

o Testing and debugging are easier

Disadvantages

e May be slower than hardwired CCU

ADVANCED MICRO DEVICES &t



1-250 ED2900A 1-250

WHY MICROPROGRAMMING IS BETTER

& More structured organization

- random hardware logic is replaced by zeros and ones
in a memory (PROM)

e Field changes are easy - PROM replacement

¢ Adaptations are easy (extendability) - additional PROMs

o System definition can be expanded - additional chips & PROMS

® Documentation and service are easier (understandability)

- structured, modular microcode instead of possible
unstructured schematics and wire lists

ADVANCED MICRO DEVICES 1



1-260 £D2900A 1-260
10t

LANGUAGE INTERRELATIONSHIPS

It is helpful to develop a more detailed understanding of
where microprogramming fits in relation to "conventional"
levels of programming.

o High Level Languages (HLL) - Basic, FORTRAN, Pascal, ADA, etc.

expressed in pseudo-math  (Z=X+Y)

converted to machine language (ML) by compiler/interpreter

each HLL statement translates into many ML statements

]

user is largely isolated from the particular hardware system

fixed instruction set (FILS)

o Assembly Language
- expressed in mnemonics (ADD R1l, R2)
- converted to machine language by assembier
- ratio to machine language statements is usually 1:1
- user no longer isolated from knowledge of system hardware

- fixed instruction set (operations and format)

ADVANCED MICRO DEVICES &1



1-270 £D2900A 1-270

e Machine Language

expressed in binary code (01101110)

each machine language instruction interpreted by a
microprogram routine

fixed instruction set (operations and format)

knowledge of system hardware

¢ Register Transfer Language (Microprogramming)

direct control of hardware at register transfer level

- must know complete system hardware

i

format of microprogram instruction statements defined

microprogramming often stored in PROM (firmware)

o Boolean Language (Hardware logic)

- logic function realization in SSI/MSI circuits

A"DVANCED MICRO DEVICES {1



1-280

ED2900A

1-280

LANGUAGE RELATIONSHIPS

SYSTEM DEVELOPMENT PSEUDO-ASSEMBLY

HIGH-LEVEL ASSEMBLY MACHINE
LANGUAGE LEVEL LEVEL MICROCODE
DECREASING \ INCREASING

- PROGRAMMING EFFORT
- ACCESS TO HARDWARE

CONTINUOUS SPECTRUM
OF LANGUAGES

- PROGRAMMING EFFORT
- ACCESS TO HARDWARE

ADVANCED MICRO DEVICES <1



1-290

ED2900A 1-290

COMPARING LANGUAGE IMPLEMENTATIONS

BASIC ASSEMBLY MACHINE  COMMENTS
8080A 8080A (HEX)
READ A, B, C
IN CRD DB 05 INPUT FROM CARD

MVI H, ADRH 26 00
MVI L, ADRL 2E 40

MOV M, A 77 CRD -> MEM - A
INX HL 23 INCR ADDRESS

IN CRD DB 05

MOV M, A 77 CRD - > MEM - B
INX HL 23

IN CRD DB 05

MOV M, A 77 CRD -> MEM - C

LETA=A+8B-C

MVE L, ADRL 2E 40 RESET ADDRESS

MOV A, M 7t LOAD ACC <- A

INX HL 23

ADD M 86 ADD ACC <- ACC + B
INX HL 23

SUB M 96 SUB ACC <- ACC - C
MVI L, ADRL 2t 40 RESET ADDRESS

MOV M,A 77 ACC -> MEM - A

o Note that each Basic statement translates into 10 or so
assembly language instructions and each assembly instruction
transtates into 1 or 2 words at the machine level.

¢ No attempt was made to make the assembly program efficient.

- the intent was to translate directly from the Basic
statements (one at a time)

ADVANCED MICRO DEVICES &1



1-300 ED2900A 1-300
) S S P

MICROPROGRAMMING DEFINITIONS

Microstore (control store, micromemory)

- The CCU memory (often ROM or PROM) where microprograms are
stored.

Microprogram
- A logically related sequence of microinstructions and/or
microroutines.
Microroutine
- A sequence of one or more microinstructions which control
a functional task (may implement one macroinstruction, for
example).
Microinstruction
- The combination of all micro-operations or fields that
specify the state of all control lines during a time
interval (clock cyle).
Micro-operation
- The combination of one or more fields to control one
functional unit, such as the ALU.
Field
- One or more bits (binary digits) as needed to define a

specific hardware activity for a functional unit such as
an ALU arithmetic operation.

ADVANCED MICRO DEVICES <1



1-310

ED2900A

MACHINE LEVEL INSTRUCTION

OP CODE

DESTINATION

R1

R2

SOURCE

15

MICRO-INSTRUCTION

( FIELD
e

817

MICRO-OPERATION

N

1-310

BRANCH
ADDRESS

Am2910
INST

cc
Mux

IR
LD

Am2903
A&B

Am2903
SOURCE

Am2903
ALU

Am2903
DEST

STATUS
LOAD

SHIFT
MuX

ETC

32 TO 128 BITS

1

ADVANCED MICRO DEVICES 1



1-320

ED2900A 1-320

INSTRUCTION REGISTE

R:

INSTRUCTION A -'-sr---——>

INSTRUCTION B -=

INSTRUCTION A -—

MICROPROGRAM HARDWARE

MICROROUTINE FOR A

— MUX

R R AL

> SHIFTER

MICROROUTINE FOR B

Each machine instruction causes a specific microroutine to be executed.

ADVANCED MICRO DEVICES <&t



1-330 ED2900A 1-330

MICROINSTRUCTIONS

o The microword is typically very wide (48-128 bits) because of
the large number of control signals required to control
system resources (functional units).

e The microprogrammer and detailed hardware designer, if not the
same person, must work as a team to define the required
microword fields (hardware/firmware/software interface fuzzy!)

¢ The microinstruction format is defined by these individuals.

@ There are no fixed rules with regard to format layout or limits
on the number of formats permissible. Objectives should include
ease of understanding, readability, testing, flexibility and
extendability and the associated development of good documentation.

ADVANCED MICRO DEVICES &1



1-340 ED2900A 1-340

SUGGESTED PRACTICES FOR MICROINSTRUCTION FORMATTING

e Use logical fields to increase readability. Worry about physical
layout later. There are development tools to help in implementation.

¢ Minimize the use of shared or overlapped fields (use horizontal
format), as they reduce understandability.

® Group fields as to the hardware functional unit micro-operations
which they control for readability and understanding.

@ Group all micromemory next address fields at one end of the
microword for readability.

ADVANCED MICRO DEVICES i1



1-350 ED2900A 1-350

DEVELOPMENT SYSTEMS
FOR AIDING MICROPROGRAM DEVELOPMENT

® META assembler - converts mnemonics to 1's and 0's. Initially
requires a definition of microinstruction format and mnemonics
(registers, operations). Then a microroutine (source) using
the specified format and mnemonics is translated into 1's and
0's appropriately.

o Microprogramming shortens the development effort considerably.

® A development system simplifies debugging (error finding)
- of microcoded routines

- of hardware functional units and connections

® Aids documentation by producing human readable code

-~ "mnemonics"

ADVANCED MICRO DEVICES ¢l



1-360 ED2900A 1-360
0

MICROPROGRAMMED CCU ADVANTAGES REVISITED:

@ Speeds comparable to Schottky TTL
o Custom design at an RTL level (mnemonics versus Boolean logic)
© Compact unit {less space) with LSI circuits

o Changes may be "firmware" changes (in PROMs) rather than
physical changes

e LSI supports a structured organization
@ LSI has better reliability

- approximately 80% of failures in the field are due to
external connection failures (pins, etch)

¢ Microprogramming the control portion (CCU) allows:

- hardware and firmware being designed in parallel

better documentation (structured microprogramming!)

development systems for microprogram development

development systems for prototype check-out

e Overall better potential for better documentation
- understandability

o Potential for better diagnostics
- separate switchable PROM

- diagnostic routines on-board the control memory (PROM)

ADVANCED MICRO DEVICES 1



1-370 ED2900A 1-370
e

Summary of Design Tradeoffs

ITEM SSI/MSI
HARDWARE

2900 FAMILY
FIRMWARE

MICROPROCESSOR
FIS MOS SOFTWARE

architecture any desired

instruction any desired
via wiring

word length any desired

execution

speed

physical size 500 dips

(controller) small packages

design time long, slow,

almost any desired

any desired
via microprogram

multiples of 4

100-200ns cycle times

50 dips
medium size

parallel - fast

predesigned

predesigned

may use software
techniques to
achieve desired set

fixed at 4,8,16,32

0.7 -5us cycle

3-6 dips
large packages

software - fast

to do correctly use aids - development systems

documentation tedious forced via programming techniques

upgrades redesign change microprogram change software
design cost highest medium lowest
debug various aides exist - microprogramming development systems

ADVANCED MICRO DEVICES <1



1-380 ED2900A 1-380

IF YOU'RE GOING TO DESIGN ANY MACHINE,

USE INDUSTRY STANDARD PRODUCTS

True LSI!

Am2900 family parts
are 10 to 20 times
as complex as

traditional MSI

The Am2900 family
is designed to be

microprogrammed

“The Am2900 family is
the industry standard

for bipolar LSI"

ADVANCED MICRO DEVICES ¢l



1-390 ED2900A 1-390

THE Am2900 FAMILY ELEMENTS

e  CPUs (CCU + ALU)

® Microprogram controllers/sequencers

0 Bipolar memory (macro and micro levels)

] Interrupt processing devices

® Bus I/0 interfaces

] Direct memory access (DMA) devices

® Timing/clocks

® Macroprogram (machine languages) controllers/sequencers

e Multipliers

ADVANCED MICRO DEVICES <1



1-400

ED2900A

SOME ELEMENTS OF Am2900 PRODUCT FAMILY

High speed microprogrammable registered ALUs

4-bit slice, 16 registers

Higher speed 4-bit slice, 16 registers

Speed selected version of 2901C

Expanded function 4-bit slice, 16 registers
Higher speed version of Am2903

Enhancement of Am2903A, including BCD arithmetic
16-bit microprocessor for high speed control
Multiport, pipelined processor, 8-bit slice

ALU auxillary circuits

Carry lookahead

Status and shift control unit for 2901, 2903, 29203
Register file extensions for ALUs

16-word by 84-bit two-port register file, for 2903
Higher speed version of 29705, for 2903A

16-word by 4-bit two-port register file, for 29203
Microprogram sequencers

4-bit sequencer slice

12-bit single-chip sequencer, for up to 4k microwords

Speed selected version of Am2910

Fastest (IMOX) version of Am2910, plus deeper stack
4-bit sequencer slice, compact version of Am2909A
4-bit program control slice

4-bit program control slice, compact version of 2930
Interruptible sequencer, 31-deep stack, B8-bit slice
16-way branch control unit, for 2909A and 2911A

Next address control unit, for 2909A and 2911A

1-400

| A S S

Am29018B
Am2901C
Am2901C-1
Am2903
Am2903A
Am29203
Am29116
Am29501

Am2902A
Am2904

Am29705
Am29705A
Am29707

Am2909A
Am2910
Am2910-1
Am2910A
Am2911A
Am2930
Am2932
Am29112
Am29803A
Am29811A

ADVANCED MICRO DEVICES &1



1-410 ED2900A 1-410

o Clocks

Single-chip clock, microprogrammable cycle lengths Am2925

0 Interrupt control

Vectored priority interrupt controller, expandable Am2914
Priority interrupt expander Am2913

® Pipeline registers

Diagnostics register, 8 bits Am29818
Multilevel pipeline register, 8 bits Am29520
Multilevel pipeline register, 8 bits Am29521

® Registered PROMs

Registered PROM, 512 x 8 Am27S525
Registered PROM, 512 x 8 Am27527
Registered PROM, 1024 x 8 Am27535
Registered PROM, 1024 x 8 Am27537
Registered PROM, 2048 x 8 Am27545
Registered PROM, 2048 x 8 Am27547

ADVANCED MICRO DEVICES {1



1-420 ED2900A 1-420

ADVANCED MICRO DEVICES <1



1-430 ED2900A 1-430

ANALYZING AND DESIGNING A
COMPUTER CONTROL UNIT

(ccuy

ADVANCED MICRO DEVICES oV



1-440 ED2900A 1-440

DEVELOPMENT OF A COMPUTER CONTROL UNIT (CCU)

o The objective of this section is to develop an understanding
of the function and use of a process sequencer. In order to
describe the design of a sequencer in a logical manner, something
is required for the sequencer to control. While the design
concepts are applicable to any kind of process control, examples
of a traffic light and a coffee machine will be presented later.
Initially, a digital computer macroinstruction sequencer process
will be used and an associated computer control unit (CCU)
developed.

) The drawing shows the classical Von Neumann/Babbage architecture
(5 basic units), with a few buffer-register details. The
arithmetic-logic unit (ALU) includes some "scratchpad" local
storage registers, the memory unit includes the memory address
register (MAR) and the program counter (PC), and the control
unit includes the instruction register (IR). This register
receives the next machine (macro level) instruction to be
executed. It is the function of the CCU to decode the operation
code (OP code) portion of the IR value and generate the sequence
of control signals needed to direct the ALU, the memory and the
[/0 portions of the system (i.e. the system resources).

ADVANCED MICRO DEVICES ¢



1-450

ED2900A 1-450

—>
<

INPUT/ OUTPUT
UNITS

N

v

SCRATCHPAD IR
REGISTERS
ARITHMETIC e ﬁngHLER
LOGIC N\ L
UNIT UNIT
(ALU) (cou)

%‘“

MAR PC

MAIN —
MEMORY

(MACHINE LEVEL)

> om

~———e3m  CONTROL

ADVANCED MICRO DEVICES {1



1-460 ED2900A 1-460

DETAIL VIEW:

o A more detailed view of this architecture shows the
level of support provided by the AMD Am2900 family
of parts.

e As can be seen, all of the components of a computer
are supported with Am2900 chips.

e For most of this discussion the controller portion is
emphasized which is shown on the left hand side of this
illustration.

ADVANCED MICRO DEVICES &t



1-470

ED2900A

1-470

iviewy
veiewy
oriewy
oclewy
piiewy

geecwy
(VATA
glecwy
oceewy

2562Wy
€0c6owy
oceewy
6l6zwy
YAt
voezwy
€oecwy
coeewy
vioscwy

VZ21/v91/¥S1/20/90/5062WY

SHITTOHLNOD 3OV4HILINI OL

N

1S3N03H 1dNHH3LNI

e

-~

Z NV 1INN HOSS3I00Hd HIHLO
AHOWAW Y I0HLINOD HO
> LdNYY3INI 73INVd TOHLINOD
@)
m £16zwy
& viszwy SNOILIONOD
I YNVE @ 1s3t
AHOW3NW b J m 162wy
z 60621y
) ozeTWy
o) gLezwy
D r 7IOHINO2 SS3HAaV Vile6zWY
\ $¥2070 WYHOOHJOHIIW Mo
1X3N zz6TWY
ﬁ o16zwy
o sz6zWY (l)
>
]
>
w .
C
H31S1934 @ )
SS3HAAV AHOW3W
anvy .
HILNNOD WYHOOHd 4
8186guy H31SID3H NOILONYLISNIOHOIN
j GES/guy
LINA
21901 ;
OILIWHLINY 1INN TOHLNOD H31INAWOD T
SH3LSIv3IY | J H31S193Y
NIMH
DNINHOM ozezuy | NOLLONHLSNI
N/ glezwy
6162WY

ADVANCED MICRO DEVICES 1




1-480 ED2900A 1-480
1 0

SIMPLIFIED SYSTEM:

e In order to initially concentrate on the sequence
controller (CCU) the remainder of the computer is
simplified to

- an ALU

- the accumulator register (ACC)

o This architecture is defined as a single-address
structure since the other address (the ACC) is
implied. Thus,

- data comes into only one side of the ALU

- the accumulator provides the second operand

~ the result of the ALU operation is transferred
to the accumulator

ADVANCED MICRO DEVICES <t



1-490 ED2900A 1-490

DATA IN OP CODE
\Y4

IR

y
A B
STATUS

ALU

CCu

FUNCTION,
CARRY

y

ACCUMULATOR LOAD, ENABLE

REGISTER

@

'

DATA OuT

ADVANCED MICRO DEVICES



1-500 ED2900A 1-500

CONTROL SIGNALS:

] In order to define the control signals, assume the ALU can
perform the functions shown on the next page. Three function
control signals are required. Five basic types of instructions
can be supported by the ALU, as shown.

o In addition, the ALU needs one bit to provide a 1l or 0 for
the carry-in. This can be provided by the microword. This
carry-in capability can be used in incrementing a register.
Note that in a bit slice ALU configuration the carry-out of
one slice would be connected to the carry-in of the next.

[ Outputs from the ALU include the numerical result of the
operation, plus various status signals. Examples include

carry out

zero

negative

overflow

ADVANCED MICRO DEVICES <1



1-510

ED2900A

1-510

CONTROL

LINES ALU FUNCTION
$2 81 59 Ciy =0 Cy =1
0 00 A+ B A+B+1
00 1 B-A-1 B-A
010 A-B-1 A-B
0011 AVB "A OR B
100 ANB “A AND B"
101 AnB "NOT A AND B”
110 AVB "A EXOR B”
111 AYB  “NOT (A EXOR B)”

MACHINE INSTRUCTION SUPPORTED:

ADD

SuB

OR

AND

EXOR

ADVANCED MICRO DEVICES Q1



1-520 ED2900A 1-520

MICROWORD FORMAT:

The following page shows the microword format to control

¢ ALU function select

¢ Carry-in

e ACC load (input)

¢ ACC enable (output)

o Load OP code into IR

ADVANCED MICRO DEVICES {1



1-530

ED2900A

1-530

<— MICROWORD FORMAT
ALU ACC ACC OP CODE
FUNCTION, LOAD ENABLE LOAD ®oo0
CARRY
4-6 1 1 1 OTHERS
AS
NEEDED

ADVANCED MICRO DEVICES {1



1-540 ED2900A 1-540

SIMPLE CCU:

] Each microinstruction contains the address of the next
microinstruction ta be executed in addition to the fields
for the necessary functional unit control signals. The
result is a single-sequence controller (i.e. no conditional
decisions). Any microinstruction can unconditionally "jump"
to any other microinstruction. Usually loops are not created
in this addressing mode.

The micro memory in this simple example is 2" words deep, and m bits
wide, where

microword width (m) = # address bits (a) + # control bits (c)

ADVANCED MICRO DEVICES &1



1-550 ED2900A 1-550

THE SIMPLEST CONTROL UNIT
LOAD NEXT ADDRESS

ON RISING EDGE OF
CLOCK SIGNAL

i

REGISTER - CLOCK

MICROMEMORY
ADDRESS

2n words

PROM

2" x (n + ¢)

n - bits c bits

NEXT
ADDRESS

TIMING CONTROL
SIGNALS TO SYSTEM

ADVANCED MICRO DEVICES {1



1-560

ED2900A 1-560

TIMING DIAGRAMS

Now, consider designing at the logic level using timing
diagrams that define the desired control signal operation.
Specifically consider their binary value based upon a
periodic interval (clock).

- use the rising edge of the clock as a measurement point

- the bit pattern formed by the time slice is defined as
the microword

The following three pages present :

- a timing diagram for a four-signal system

- the timing diagram digitized on the clock edge

- the resulting program flow and the clocked microprogram
that would generate the desired timing diagram

ADVANCED MICRO DEVICES ¢t



1-570

ED2900A

1-570

JWIL

d TVYNOIS TOHLNOD

O TYNDIS TOHLNOD

8 TTYNOIS TOHLNOD

V TYNOIS TOHLINOD

A00712

ADVANCED MICRO DEVICES 1




1-580

ED2900A

1-580

JNIL

Q TTYNDIS T0H1INOD

O TVNDOIS TOHLINOD

8 TYNDIS TOH1INOD

V TVNDIS TOHINOD

AJ0710

ADVANCED MICRO DEVICES 1




1-590

ED2900A

MICROPROGRAM

MICROPROGRAM MEMORY OUTPUTS
MEMORY ADDRESS | A B C D
0 1 1 1 0

1 0 1 1 0

2 0 0 1 0

3 0 0 1 1

4 0 0 1 1

5 1 0 0 1

6 1 0 0 1

1-590

MICROPROGRAM
FLOW

- ©

O v & W N

This is the microcode for sequential execution.

ADVANCED MICRO DEVICES &1



1-600 ED2900A 1-600

CLASS EXERCISE

Turn to the ED2900A Exercise and Laboratory Manual

Solve the simple traffic light problem by designing at the Boolean level
using a state diagram to define the sequenced transitions between each
desired 1ight condition. The associated state code of zeros and ones is
then used to define the microroutine. This problem could also be solved
at the waveform level by initially defining the desired transitions in
terms of zero-one transitions for each control signal.

ADVANCED MICRO DEVICES <1



1-610 ED2900A 1-610

ADDING PROGRAM FLOW CONTROL TO CCu

ADVANCED MICRO DEVICES <1



1-620

ED2900A 1-620

PROGRAM FLOW CONTROL ADDITION (conditional branches)

Required microprogram flow should have the same characteris-~
tics as any computer program, f.e. sequence (continue),
iteration (loop) and decision (branch) in order to implement
an algorithm. The previous design permitted only sequential
flow (a single sequence of microinstructions). Thus, the
current CCU structure must be expanded to provide for these
additional capabilities.

The controller just described can execute one serial sequence
of operations. In order to select from multiple sequences
and to allow conditional branching, further addressing hard-
ware is necessary. The current CCU configuration will be
enhanced with additional hardware to provide this capability.

A means must be provided to select from two microaddress
sources. Thus, a tri-state bus is used. Since only one
source may be actively connected to this bus at any time,
each source requires an enabling signal to allow it to be
selectively enabled and disabled.

ADVANCED MICRO DEVICES {1



1-630 £D2900A 1-630

Application of Tristate Gates

Control

The Tristate Gate Symbol

n inputs
l . o ° l <Bus
7 ,.../\...\
Source Bit #0
#1
Control
Source
#2
(One of N
decoder) .
Source |’ §
#3
v
Other
bits
Bit #0

Only Bit @ is illustrated, all other bits would be attached similarly.

ADVANCED MICRO DEVICES {1



1-640

ED2900A 1-640

PROGRAM FLOW CONTROL (Cont'd)

A "load counter" signal allows the counter to be loaded from
one of these tri-state sources or to simply be incremented.

The block labeled “logic" decodes a 2-bit value from the
microword "next address select field" to generate these
three control signals. An alternate approach would be to
provide three separate bits in the microword for these three
signals.

The multiplexer (MUX) and polarity circuits provide the test
signals for conditional jumps, and will be developed in more
detail later. Likewise, the instruction register (IR) and
jts associated mapping PROM, which allow the introduction of
new micro-addresses, will be developed later.

Note that in formatting the microword, the microinstruction
next microaddress sequence fields are grouped to the left, as
previously suggested, in order to provide more structure and
readability in the code. Grouping in any manner provides for
understandability.

ADVANCED MICRO DEVICES <1



1-650

Strobe

ED2900A

MULTIPLEXER

Select

—t—
Enable,E B
°

A

T

Y

Y

01=1

Inputs <«

y

00=0

Inputs

Logic Circuit

4-to-1
MUX

EN 0 1

Enable

Block Symbol

10=2

1 =3

———> Qutput

1-650

ADVANCED MICRO DEVICES 1



1-660 ED2900A 1-660

e
General Computer Control Unit (CCU) Architecture

Each block will now be discussed in terms of its operation
associated with sequencing microinstructions.

INSTRUCTION
LOAD
e IR
- en e e e - T - ow e  am
OP CODE : OTHER
STATE
SELECT —7“=3  MAPPING PROM
X n
TRI-STATE
[N TRI-STATE
VCC
[e- 1"
7 ¥
-:) ° COUNTER
. MUX f=3» POLARITY [-a{ LOGIC |=3d LOAD e CLOCK
[ ] ., , }
- 1
0 ke n
<[f.l 2
lr
1’ MICRO  MEMORY
4 '
13 Aoor | por | BRANCH | ranch | Loap | RequIreD
SEL SELECT ADDR IR CONTROLS
4 4
A n A 1 c

TO ALU

ADVANCED MICRO DEVICES 1



1-670 ED2900A 1-670
L

LINEAR SEQUENCES (“CONTINUE" microinstruction)

(] In programming, quite often one instruction follows another.
This is true of microprogramming as well. In the CCU, this
is facilitated by using a counter register instead of the
general register as previously shown. This counter contains
the address of the current microinstruction, and can be
incremented to the microaddress of a sequential flow is
desired.

. The “next address select" field would contain the necessary
bit pattern to disable the counter load control, allowing
the counter to increment on the next clock pulse. Since
three control signals must be generated, two bits would be
needed for this encoded field. Whatever the actual bit
pattern, the mnemonic “CONT" is assigned for a "continue"
microinstruction. The other fields of the microword are
not used in this mode, and are mnemonically represented as
"X' for "don't care".

For example:

MICROINSTRUCTION SEQUENCER MICROOPERATIONS

FLOW NEXT COND BRANCH CONTROL
ADDR POL SEL ADDR
° CONT X XXX XXXX * ok ox
° CONT X XXX XXXX * ok ox
° CONT X - XXX XXXX * ok ok

ADVANCED MICRO DEVICES 1



1-680

LOAD

STATE

SELECT :

N\ TRI-STATE

ED2900A

1-680

INSTRUCTION

!

2

0P CODE

IR

: OTHER

!

MAPPING PROM

'

>4

-

cc

MUX

TRI-STATE

LOAD

AR Ad X I

COUNTER

e CLOCK

MICRO

MEMORY

BRANCH
COND
SELECT

BRANCH
ADDR

REQUIRED
CONTROLS

ADVANCED MICRO DEVICES 1



1-690 - ED2900A 1-690

MULTIPLE SEQUENCES (JMAP)

0 The controller can still execute only one sequence with the
mnemonic "“CONT".

. In order to execute multiple sequences, the ability to exit
the current sequence is required and a new starting address
from some storage location must be provided, i.e. a jump
(conditional or unconditional) capability.

(] The input to the counter can be used for this purpose (a
Jjump address). Various sources are examined as sources for
this address.

® First consider the interpretation of a new macro level
instruction. Once the counter is loaded with a new
microroutine starting address, each microinstruction in
this microroutine sequence could have a "CONT" in the next
address select field, except possibly for the last one.

The microinstruction would also contain one bit fields to

- enable the counter load control for external
data (address) input

- enable the tri-state output signal of the mapping
PROM which is driven from the macroinstruction
register (op-code field).

® The mnemonic "JMAP" is used to represent this “jump via
the mapping PROM".

ADVANCED MICRO DEVICES &\



1-700

ED2900A

INSTRUCTION

!

LOAD

IR

OP CODE [
]

OTHER

STATE
SELECT

!

MAPPING PROM

>4

Y

s

POLARITY

COUNTER
LOAD

, |

TRI-STATE

pgp— CLOCK

MICRO  MEMORY

ADDR | POL

BRANCH
COND
SELECT

BRANCH | LOAD
ADDR IR

REQUIRED
CONTROLS

1-700

ADVANCED MICRO DEVICES 1



1-710 ED2900A 1-710

MICROMEMORY ADDRESS SOURCE

e Consider now the new microaddress source for the counter
in more detail.

® In a digital computer, the starting micro-address is
dependent upon the current machine (macro) instruction.

® In a controller with no macro level instructions, the
starting micro-address is dependent upon the current
external "command" which must supply a micro-address.

® The computer control unit (CCU) is used as an example, but
the design approach is common to both. The CCU accepts
either a control command or a machine instruction (OP code)
as directly or indirectly defining a macro-address which
lends to a sequence of microinstructions.

[ Thus, to be able to control which microroutine is to be
executed based upon a macro instruction
- Add a macroinstruction register (IR)
- Add the IR "load control" bit to the microword format
- Gate the opcode portion of the macroinstruction to

the counter as the starting address.

Note: A PROM mapper is not used in this simple case. Thus the
number of opcode bits cannot exceed the microprogram address
width. If it equals the microaddress width, there can only be
one microword per macroinstruction (assuming unique opcodes).

ADVANCED MICRO DEVICES <1



1-720 ED2900A 1-720

OP-CODE MAPPING PROBLEM - There are typically fewer bits in
the opcode than in the microaddress for example,
let there be
x bit opcode and n bit counter

where
x <n

SOLUTION

One approach is to input @ on the remaining least

significant microaddress lines:

OPCODE 4
P
START ADR -
COUNTER } oD-X WORDS
START ADR
n START ADR )
START ADR
ADDRESS
EXAMPLE
Xx = 8
n=12
n-x = 4

This permits 16 microwords (24=16) per sequence or microroutine.

ADVANCED MICRO DEVICES &1



1-730 ED2900A 1-730

Examine the micromemory:

START ADDRESS:

] 16 MICROWORDS
START ADDRESS: &\\\

START ADDRESS: < 16 MICROWORDS
SIS S

START ADDRESS:

N
START ADDRESS: N > 16 MICROWORDS

AR
START ADDRESS:

PROBLEM

e What about microroutines of less than 16 microwords?
- Fragmented control memory
e What about microroutines of more than 16 microwords?

- Lose starting address and its associated macro OP code

SOLUTION

e Add a micromemory address decoded (mapper)

ADVANCED MICRO DEVICES &1



1-740 £D2900A 1-740
OP CODE MICROPROGRAM MEMORY
48ITS START ADDRESS
16 WORDS, MAPPING
8 BITS WIDE PROM START ADDRESS
START ADDRESS
—_— ] VARIABLE
———— LENGTH
START ADDRESS
START ADDRESSES
GATED THRU COUNTER
ol
=| 256 WORDS, 32-128 BITS WIDE
ANY 16 OF THE 256
LOCATIONS CAN BE USED ROM/PROM
AS THE START ADDRESS
.‘—.—_—_—__—_—

CONTROL
SIGNALS

ADVANCED MICRO DEVICES 1



1-750 ED2900A 1-750

FURTHER SUGGESTIONS:

] Use a larger mapping PROM to provide for privileged macro
instruction operation or detection by adding address lines
driven by the console switches or the PSW (processor status
word -- usually ACC value plus ALU status bits).

® Privileged instructions without the privileged bit set, map
into a common "trap" microroutine.

® Provide for more addressing capability than is needed in
the initial design.

° Provide for expansion in either of these directions in the
initial design.

ADVANCED MICRO DEYVICES <1



1-760 ED2900A 1-760

MICROPROGRAM MEMORY

OP CODE
4 BITS START ADDRESS
64 woRDS, MAPPING
& BITS WIDE PROM START ADDRESS
START ADDRESS
S VARIABLE
— LENGTH
PRIVILEGED
START ADDRESS
- STATE SELECT |
FOR TESTING
START ADDRESSES
GATED THRU COUNTER
256 WORDS, 32-128 BITS WIDE
ANY 16 OF THE 256
LOCATIONS CAN BE USED ROM/PROM
AS THE START ADDRESS
e

CONTAINS A TRAP

: FOR ERROR
CONTROL .
SIGNALS

ADVANCED MICRO DEVICES {1



1-770 ED2900A 1-770

MICROPROGRAM CONTROL REVISITED

® Structuring of the microprogram can be accomplished with the
same conceptual program structures which exist for high level
languages. A more extensive list based upon sequence, branch
and iteration is:

CONT (sequence)

G0-TO (unconditional branch or jump)

IF-THEN-ELSE (conditional branch)

IF-THEN (conditional branch)

BO X (iteration)

DO UNTIL P = TRUE or DO WHILE P = FALSE (iteration)

On X GO-TO (case statements/conditional branch)

° These various control flow operations are now presented for
the previous microsequencer architecture in more detail.

ADVANCED MICRO DEVICES &1



1-780

ED2900A 1-780

UNCONDITIONAL JUMP (JP)

® In order to jump to another microaddress from the middle of
a linear sequence, a new address is again required. The
input to the counter will be used, but this time the new
address will come from the current microinstruction.

® The next address select field would carry a bit pattern to
- enable the counter load control
- enable the tri-state gates from the microword

branch address field

® The mnemonic “JP" is used for this next address operation

For example

FLOW NEXT COND BRANCH
(ADDR) ADDR POL  SEL ADDR CONTROL
51 CONT X XXX XXXX x % o
52 CONT X XXX XXXX % o
53 JP X XXX 27 % ox
90  CONT X XXX XXXX * o x
91  CONT X XXX XXXX x x o
92 JMAP X XXX XXXX x x %

ADVANCED MICRO DEVICES {1



1-790 ED2900A 1-790

INSTRUCTION

LOAD
______ T -
OP CODE : OTHER
STATE
SELECT omybe—3»t  MAPPING PROM

A

TRI-STATE

TRI-STATE

Yy
COUNTER

POLARITY LOAD

—I

MICRO  MEMORY

BRANCH
COND
SELECT

BRANCH REQUIRED
ADDR CONTROLS

ADVANCED MICRO DEVICES 1



ED2900A 1-800

1-800
EXAMPLE - JP
NEXT ADDRESS SELECT CONT = @9
JMAP = p1
P =1p
r BRANCH ADDRESS
PROM
ADDRESS
131 0 0 X
) START
141 6 1 X NEXT OP
[ J
®
START: *
50] o 0 X )
51 0 0 X
{ SEQUENTIAL
f EXECUTION
52 0 ¢ X
53] 1 o | 9 )
FORWARD :
BRANCH\ .
9077 o 0 X
BACKWARD
9f€1 0 o0 | X BRANCH
92 1 o | 13
AV

\ THESE BITS ARE “DON’T CARE"

FOR THIS OP CODE

FOR THIS OP CODE THEY ARE
AN ADDRESS

ADVANCED MICRO DEVICES

Pu



1-810 ED2900A 1-810

EXPLANATION:

50) Start address of routine
50 is an address in the PROM mapping

Continue to 51
51) Continue to 52
52) Continue to 53
53) Go to 90 (jump to 90) - JP
-~ The branch address is selected to be active
and loaded into the counter
- Note how both fields participate
90) Continue to 91
91) Continue to 92
92) Go to 13
13) Continue to 14
14) Go to next sequence start address - JMAP

- Note that the branch address field values
are don't care

ADVANCED MICRO DEVICES 1



1-820 ED2900A 1-820

MICROPROGRAM RETURN FLOW CONTROL

(] In a CCU microprogram it is usually required to return to a
common (shared) micro instruction sequence before jumping to
the next microroutine: This is required in order to get the
next macro instruction from main memory, thus the following
steps are required:

- microaddress 13 might be the macro instruction fetch step

- microaddress 14 would be the op-code decode step to control
a microaddress

COMMON
CODE

CONT 13  INSTRUCTION FETCH
JMAP 14 DECODE STEP

OTHER SEOUENCES

88
/
89
90
POSSIBLE SHARED END
CONT ¢ 91 OF SEQUENCE STEPS
JP ¢ 92

ADVANCED MICRO DEVICES



1-830 £D2900A 1-830

CONDITIONAL JUMPS OR BRANCHES:

[ During execution of certain opcodes, it is often desirable to
end a microroutine dependent upon the result of a logic test.
For example, a check made on a hardware status line.

For example, Add two numbers and check for

- overflow error -~ do one microinstruction sequence

- no overflow error - do a different sequence of
microinstructions

or, Add two numbers and do

- on carry-out = 1; one microroutine

- on carry-out = @; a different routine

ADVANCED MICRO DEVICES &1



1-840 ED2900A 1-840

OTHER TESTABLE CONDITIONS MAY INCLUDE:

logical mnemonic
expression

ACC ZERO

]
o

ACC > 0 SIGN

OVERFLOW OVR
CARRY = 1 cout
A > B GTR
A < B LESS
interrupt request IR
error status bit set ES

invalid instruction bit set II

° A specific control flow example is shown in the figure where
if the condition is true, the CJP next address selection will
be microaddress 85. If the condition is false, the next
microaddress is 54.

ADVANCED MICRO DEVICES 1



1-850 ED2900A 1-850

CJP (address)

50 ‘
51 ¢
52
CONDITION TRUE
CJP 53 85
54 86
55 + 87
56 ¢ 88
CONDIT!ON
FALSE

ADVANCED MICRO DEVICES 1



1-860

ED2900A 1-860

CONDITIONAL JuMP (CJP)

In this instruction the micro-address is also provided from
the microinstruction branch address field (same as JP). The
next address select field code would

- test the condition code input

- IF the condition code is TRUE, then

(1) enable the counter load control

(2) enable the tri-state gates from the
microword branch address field

- ELSE (condition code FALSE)
(1) disable the counter load control

The mnemonic "CJIP" is used.

In order to allow testing one of several available conditions
(overflow, negative, zero, etc.) another multiplexer is used.
To allow for testing for either TRUE or FALSE conditions, a
polarity selector is used. Both the choice of condition and
the choice of polarity is controlled from the microinstruction.

Note that a constant TRUE and a constant FALSE are shown as
inputs to the MUX. This allows an alternate way to do
unconditional jumps with a "CJp".

ADVANCED MICRO DEVICES {1



1-870 ED2900A 1-870

INSTRUCTTON

LOAD
> .
OP CODE ! OTHER
STATE '
SELEcT —7*—|  MAPPING PROM
TRI-STATE
N TRI-STATE 4

COUNTER

CONDITION
POLARITY LOAD

.

MICRO  MEMORY

BRANCH
cong | BRANCH REQUIRED

seLecr | ADDR CONTROLS

ADVANCED MICRO DEVICES &1



1-880 ED2900A 1-880
1 S

EXAMPLE OF CURRENT CONTROL FLOW OPERATIONS

] The following page provides a sample microroutine (seguence)
which demonstrated the four microprogram control flow
mnemonics

- CONT

- CJp

] There are three fields which are important

- (next) address select

~ branch condition select including polarity

- (micromemory) address select

- branch (micromemory) address

] The next address select field determines the microinstruction
type.

ADVANCED MICRO DEVICES 1



1-890 ED2900A 1-890

Example - CJP
CONT = 99
JMAP = P1
NEXT JP = 19
BRANCH ADDRESS CJP =11
CONDITION SELECT BRANCH
SELECT - ~— ADDRESS
PROM —; Y
ADDRESS: ;
START: 13 X 00 X

14 X 110 | 30

UNCONDITIONAL
BRANCH

CONDITIONAL | 30 2 |11 | 56

TEST '
STATEMENTS 31 ] 1 o5 TEST CONDITION 2 -~ FAIL

TEST CONDITION 1 — FAIL

33 X 00 X

34 1| 11 | 106 TEST CONDITION 1 — TRUE

CONDITIONAL BRANCH

106 X |00 X :
107 X 1o1 ] X START NEXT OP
\\——- S1, So CHOOSE CONDITION TO BE TESTED, IF ANY.

ADVANCED MICRO DEVICES <1




1-900 ED2900A 1-900

EXPLANATION:

13) CONT - first microaddress

14) JP - unconditional jump to microaddress 30

30) CJP - jump to microaddress 56
if condition 2 = TRUE

assume C2 = FALSE

31) CJP on condition 1, "assume FALSE"

32) CONT

33) CONT

34) CJP on condition 1, "assume TRUE", GO TO
microaddress 106

this time Cl = true

GO TO 106
106) CONT
107) JMAP - unconditional jump

select mapping PROM output

ADVANCED MICRO DEVICES Q1



1-910 ED2900A 1-910
e R —

CLASS EXERCISE: MICRO-PROGRAM CONTROL

® The purpose of this exercise is to develop additional
understanding of microprogramming architectures through
a simple example.

° Consider the simple computer presented at the beginning of
this section. With the control fields added, the micraword
is defined as follows:

ADDRESS SEGUENCER

< MICROWORD FORMAT >
NEXT BRANCH I grancy LOAD ALY LOAD
ADDRESS | POLARITY | cONDITION [ oo IR FUNCTION, ace e o e
SELECT SELECT CARRY
» i
I
I
2 1 3 n o1 4 1
I
# of n bits '
|
' )
N 4 \r\—’/
— N—
MICROINSTRUCTION MICROINSTRUCTION

CONTROL (ALU...)

NOTE: Another way of stating requirements is through the use
of a flow chart defining specific RTL sequential operations.

© For the structured flowchart on the next page, write the

microcode for the sequencer portion of the microinstructions.
Define mnemonics where needed.

ADVANCED MICRO DEVICES <V



1-920 ED2900A 1-920

READ DATAIN--» ACC

YES ACC = 0 NO
ACC - ACC + DATAIN LOAD IR
YES NO JUMP MAP
— < acc=0 ‘
1' Y
ACC «- ACC V DATAIN DATAOUT - ACC

DATAOUT «- ACC

l

O

ACC<--0

This flowchart does not represent a real-world algorithm,
but is useful as a pedagogical example.

ADVANCED MICRO DEVICES O



1-930

£D2900A

1-930

ENCODING OF MNEMONICS (bit patterns are arbitrary examples)

CONT = 00; continue

JMAP = 01; jump map

JP = 10; wunconditional jump

CdP = 11; conditional jump

TRUE = 1; condition true

FALSE = 0; condition false

ZERO = 000; test for ALU result =0

SOLUTION
FLOW  NEXT COND  BRANCH (REGISTER TRANSFER

(MM ADDR*) ADDR* POL SEL ADDR*  CONTROL LANGUAGE)
1 cJap FALSE  ZERO 6 DATAIN -- ACC
2 cJp FALSE  ZERO 4 ACC -- ACC + DATAIN
3 CONT X XXX XXX ACC -~ ACC V DATAIN
4 CONT X XXX XXX DATAQUT -- ACC
5 JP X XXX 1 ACC --0
6 JMAP X XXX XXX LOAD IR**

* A1l addresses are micromemory addresses

** Assume macroinstruction prefetch

ADVANCED MICRO DEVICES ¢1



1-940 ED2900A 1-940

ADVANCED MICRO DEVICES &1



1-950 ED2900A 1-950

IMPROVING CCU SPEED

ADVANCED MICRO DEVICES 1



1-960 ED2900A 1-960

TIMING CONSIDERATIONS

' Consider the CCU with the ALU attached as shown in the
figure on the next page. Note that the condition code
MUX and address logic are combined into one block.

° Note also the addition of a status register between the
ALU and the condition code multiplexer. This allows a
test on the result of the previous operation, and increases
speed as will be seen later.

° In order tc determine the clock period, it is necessary to
time the signal flows from the time they leave a register
until they are ready to be clocked into another register.
This must be done for all such paths. The slowest register-
to-register path determines the lower bound on clock speed
(microcyle).

® For example, the main path delays in the CCU itself are:

clock to output of the counter
- read-access time of micromemory
- set-up time for the counter (except for CONT)

- in parallel with the above, time through the MUX
and set-up time for the counter load

tep = tCL to output * tread access * tset-up

since ty,y delay + tsetup is shorter

® In order to examine speed improvements in the CCU, consider
the timing paths including the ALU.

ADVANCED MICRO DEVICES <1



L2 $IJIA3Q OWIW AQIINVAAY

DATA IN

ALY

STATUS
REGISTER

ADD THE ALU

INSTRUCTION REGISTER

ccu

Voo —e{3
CONDITION 2

-2

CONDITION 1 Mux LOAD COUNTER

!
A v B /
ALU /

'/ FunCTION
cLock LOAD, EN
— ACC

DATA OUT

CLOCK

GROUP&_— p

CLOCK

MICROPROGRAM
MEMORY

ADDRESS BRANCH

COND. SELECT ADDRESS

OTHER

PIPELINE REGISTER

CLOCK
e

CONTROL
SIGNALS

046-1

V006203

0L6-1



1-980 ED2900A 1-980

TIMING COMPUTATION

[ The timing for this implementation is computed by examining
all sequential paths. Two of these are of interest in
developing our CCU:

First:

1. Clock to output of counter 15ns

2. Fetch instruction 50 ns
3. ALU to status line 95 ns
4. Status register set-up 5 ns

Total = 165ns

And second, in parallel:

Steps 1. and 2. 65 ns
3a. ALU instr to output 120 ns
4a. ACC set-up 5 ns

Total = 190 ns

° The minimum microcycle required is the time of the longest
path Qp==CNTR(15)+ MEMORY(50) + ALU(120) + ACC(5) = 190 ns

ADVANCED MICRO DEVICES 1



L7 SIDIAIA OUDIW AIINVAAVY

DATA IN

ALU

STATUS
REGISTER

Ao —
CONDITION 2

CONDITION 1 MUX

b
A 4‘\\//’ B /
ALU //
/  FUNCTION
CcLOCK LOAD, EN
E— ACC
DATA OUT

CLOCK

GROUND
i |

INSTRUCTION REGISTER
ceu
MAP
o 1
s
MUX
cLoCK
LOAD COUNTER e
1
] An
0 s
MICROPROGRAM
MEMORY
aopress | BRanch
COND. SELECT | ADDRESS OTHER
|
cLocK
PIPELINE REGISTER s
CONTROL
SIGNALS

066-1

V006203

066-1



1-1000 ED2900A 1-1000

CONTINUING EVOLUTION OF SEQUENCER

. A fairly powerful sequencer has evolved in terms of the
instruction set (next address selection) it can support.
However, speed is another criteria. Some additional
improvements can be made to increase speed of operation.

(] For this development, the execution of a conditional branch
is analyzed, both with the branch taken and with the branch
not taken.

I

CONDITIONAL BRANCH (CJP) I+1 b

1+2 b+1

e Note that although several things seem to take place
"simultaneously" during a single microcycle, some of
them actually occur sequentially within a microcycle
due to asynchronous nature (non-clocked logic delays)
of the hardware.

"] Note also that there is no difference in flow when the
branch is taken as shown in the BRANCH TAKEN diagram.

ADVANCED MICRO DEVICES {1



1-1010 ED2900A 1-1010

No Branch

l«——— u-CYCLE ——»
CLOCK ] 1 1 |
COUNTER u-INST i ADR u-INST i+ 1 ADR p-INST i+ 2 ADR
MEMORY FETCH —_ FETCH S FETCH —
u-INST i u-INST i+ 1 p-INST i + 2
ALU —— EXECUTE —— EXECUTE —— EXECUTE
ueINST i u-INST i + 1 p-INST i+ 2

ACCUMULATOR RESULT OF RESULT OF RESULT OF

p~INST i-1 u-INST i p-INST i+ 1

ADVANCED MICRO DEVICES &1



1-1020 ED2900A 1-1020

Current Instruction Flow

(No Branch)

i+l cp
Counter Ad?r
|
Micro- =
memory In?tr
Fetch
1

ALU )
Execution In?tr

¥
Status Results
Register i-1

ADVANCED MICRO DEVICES 1



1-1030

ED2900A

Branch Taken

1-1030

te— -CYCLE —»

cLock ] L | j .| — LT

COUNTER u-INST i ADR u-INST i+ 1 ADR| u~-INST b ADR ‘ s v

MEMORY FETCH — FETCH — FETCH — .o s

u~INST i M=INST i+ 1 u-INST b
ALU — EXECUTE | — (COND BRN| — EXECUTE ..
p4NSTi.\ INSTR) u-INST b

ACCUMULATOR ’ e RESULT OF -_— RESULT OF

u-INST j u-INST b

Branch on result of previous instruction.

ADVANCED MICRO DEVICES <1




1-1040 ED2900A 1-1040
0 o A S

Current Architecture with Branch Taken

i+ 1 cp b i+ 2 cpP
- ¥ 3 !

Addr Addr

Counter ; ‘ i+1
]
Micro-

Instr Instr
memory i i+ 1 (CJP)
Fetch

L
ALU Ins’tr Instr
Execution i i+l
e
Status Results Results {
Register i-1 [ i E
b+ 1 Cp b+ 2 cp
3 v ¥

Addr Addr )

Counter b b+ 1

|- L

Micro- Instr Instr
memory b b+ 1
Fetch ] LJ

ALU Instr Instr
Execution b b+ 1

4 -

Status Results . Results
Register i+ 1 - b

ADVANCED MICRO DEVICES &1




1-1050 £D2900A 1-1050

PROBLEM WITH NONPARALLEL USE OF FUNCTIONAL UNITS

° Memory fetch idle during ALU execute

e ALU idle during memory fetch

° Wide or long micro-cycle (relatively slow)

A SOLUTION

) Add a pipeline register (buffer) at the output of
the ROM (PROM). The pipeline register then buffers
the "flow" of data in the logic (pipe)} so that
independent functional units can act in parallel
(concurrent operation) for reduced microcycle timing.

A two-level pipeline results in the current design
with:

1) counter register

2) pipeline register

ADVANCED MICRO DEVICES 1



1?7 S3DIAIQ OUDIW AIINVAAY

5

INSTRUCTION REGISTER

MEMORY
MAP
0E TRI-STATE
LOAD
POLARITY LOGIC cLOCK
COUNTER
e
o
_ L n
CONDITIONAL
— MUX
] 4 1
A-’ f‘/
—
MICROPROGRAM
— MEMORY
NEXT BRANCH
ADORESS { POLARITY | CONODITION f;‘;::s"s OTHER
SELECT SELECT
OE cLock
PIPELINE REGISTER —————
n b~
-
CONTROL
TRI-STATE SIGNALS

0901-1

V006203

0901-1



1-1070

ED2900A

Pipeline Concept

Counter

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

1-1070

cp

Results

i-2

ADVANCED MICRO DEVICES 1



L2 SIJNAIA OWIW AQIINVAAY

DATA IN

p SallabL I

ALU

\ A\// B/z

ccu

INSTRUCTION REGISTER

ALY /

/ FUNCTION

CLOCK

LOAD, EN
ACC

STATUS
REGISTER

Veg ——ei3

CONDITION 2

CONDITION 1 MUX

DATA OUT

CLOCK

11

GROUND
———

MaP
]
0 "
s
MUX
cLock
LOAD COUNTER | Dl
s
MICROPROGRAM
MEMORY
ADDRESS | BRANCH
COND. SELECT ADDRESS OTHER
cLOCK
PIPELINE REGISTER |
CONTROL
SIGNALS

0801-1

V006203

0801-1



1-1090

Counter

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

Counter

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

ED2900A
L ]

Pipeline with Branch Taken

i+ 1

cP

Addr

Ccp

i+2

¥

Instr
i+ 2

Instr

i + 1(CJP)

L]

Instr
i+ 1

3

Results

1

i+ 2

R4 o
Addr
i+ 1

1-1090

=

Instr
i + 1(CJP)

Results

S

i-1

Cp

Instr
i + 2(NOP)

LI

y

Instr
i + 2(NOPF)

\ 4

results

i+ 1

ADVANCED MICRO DEVICES O



1-1100

ED2900A

1-1100

No Branch
_,| SHORTER |_

u-CYCLE
CLOCK l E I | l | I | [
COUNTER u-INST i p-INST i+ 1 | u-INSTi+2 | u-INSTi+3 | pu-INSTi+ 4

ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
p-INST i u=INSTi+1 | u=INSTi+2 | u-INSTi+3 | u-INSTi+4

PIPELINE REG | u-INSTi—1 u-INST i u-INST i+ 1 | pu-INSTi+2 | pu-INSTi+3
ALU- EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE

u=INSTi— 1] wu-INSTI u-INST i+ 1 | u-INSTi+2 | u-INSTi+3

-

ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF | RESULT OF

u=INSTi—2 | u-INST i— 1| p-INST i u=INSTi+1 | p-INSTi+2

ADVANCED MICRO DEVICES 1

LI




1-1110

ED2900A

Branch Taken

1-1110

uCYCLE
cock  J LI LU Lur
COUNTER PINST i [uINST i+ 1|uINSTi+2{ uINSTRb |u INSTRb+1u INSTb+2
ADR ADR ADR ADR ADR ADR
MEMORY FETCH |FETCH FETCH FETCH S
MINST i |uINSTi+1|uINSTi+2| uINSTb (0\
. %% . 0
PIPELINE REG. |uINSTi=1| uINSTi |uINSTi+1 (HOLQov 4 INST b —_—
ALU EXECUTE | EXECUTE | (COND (HOLD) | EXECUTE —
WINST i— 1| wINST i BRAN u INST b
INSTR)
ACCUMULATOR|RESULT OF|RESULT OF|RESULT OF ? RESULT OF
pINST i — 2| INST i— 1|u INST i 4 INST b

ADVANCED MICRO DEVICES 1



1-1120

ED2900A 1-1120

ADDITIONAL ARCHITECTURAL IMPROVEMENTS

Further improvement can be made by moving the counter out of
the path of the branch address, and replacing it with a
combinatorial logic incrementer and a microprogram counter
register (uPC). The incrementer generates the next sequential
address during the clock cycle with only a gate delay.

A multiplexor is added to allow either the micro PC register
or the tri-state bus to be selected as the address source to
the micro memory.

Note that the tri-state output on the pipeline is for the
branch address field only.

This architectural change eliminates the problem of a lost
cycle when the branch is taken and allows the controlier to
run at full speed all the time as shown in the following
diagrams:

ADVANCED MICRO DEVICES &1



L? SIDIAIA OWIIW AIINVAAY

l

INSTRUCTION REGISTER

L

CONDITIONAL
Mux

POLARITY

MEMORY
MAP
3 ~———— TRLSTATE
cLOCK
2 5 o uPC #PC REGISTER j———
LOGIC a ' MUX
Sg
INCREMENTER
4 1
4# //
MICROPROGRAM
MEMORY
NEXT BAANCH
ADDRESS | POLARITY | CONDITION f&?::::sﬂs OTHER
SELECT SELECT
OE cLock
PIPELINE REGISTER ——
"L
CONTROL
TRESTATE —— SIGNALS

ocil-1

V006203

0ETlT-1



1-1140

£D2900A

1-1140

Pipeline Concept with Incrementer

Incrementer

uPC

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

CP

L 4
Kesults

i -2 0

ADVANCED MICRO DEVICES {1



17 SIJIAIA OWIIW AIINVAQY

(revised)

ALV

DATA IN
! \/ s /
ALU Z
/ FUNCTION
c — LOAD,
LOCK N
aocx | ® :
ACC
DATA OUT

INSTRUCTION be—
REGISTER
ccu OPCODE
o€
MAP
b i+2
STATUS s
REGISTER ?Vcc l ]
2 ’ CLOCK
L F1s MuX @,.pc REGISTER
a CONDITION X
g AND b b+ 1
G LOGIC
@ GROUND @ INCREMENTER
b
cLock branch address
©) =b
MICROPROGRAM
MEMORY
NEXT
ADDRESS A“:(:‘:‘Ecs“s OTHER
SELECT
o {b>
@ cLock
L] PIPELINE REGISTER :
OE <i o+ 1>
‘ l TRt | »
' atate Jo 7
CONTAOL
SIGNALS

TIMING

0s11-1

v006203

0GTI-1



1-1160

ED2900A

Pipeline with Incrementer - Branch Taken

Incrementer

uPC

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register
Incrementer
uPC

Micro-

memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

CP

A
v

\r

—1

L;+3 or b+1]CP

¥

Addr
i+ 2

O

Instr
i+ 2
or b

2

Instr
i + 1(CJIP)

L]

v

Instr
i+ 1

h 4

Kesults

1

Adar

CP

I + 1

4

Instr

i+ 1(CJP)

Results

i-17

Adcr

CP

b + 1

Instr

Results

i+ 1

1-1160

ADVANCED MICRO DEVICES 1



1-1170

ED2900A

No Branch

1-1170

— uCYCLE |-
cock  __| L . L j LI
INCREMENTER | uINST i+ 1 MINST i+ 2 MINSTi+3 | uINSTi+4 HINST i+5
ADR N ADR ADR ADR ADR
u PC REG u INST i LINST i+1 RINST i+ 2 MINSTi+3. | uINSTi+4
ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
i INST i WINST i+ I\{ wINSTi+2 | uINSTi+3 | uINSTi+4
PIPELINE REG MINST i—1 1 INST i MINST i+1 | wINSTi+2 uINSTi+3
ALU EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE
wINSTi—-1 u INST i RINST i+ 1 uINSTi+2 | pINSTi+3
ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF RESULT OF
MINSTi—2 | wINSTi—1 u INST i RINSTi+1 MINST i+ 2

Final Version Architecture

ADYANCED MICRO DEVICES {1




1-1180

ED2900A

Branch Taken - No Penalty

1-1180

— ucYCLE |—o
CLOCK l | | I l I .I | l | I
INCREMENTER | uINSTi+1 | uINSTi+2 | uINSTb+1| pINSTb+2-| uINST b+ 3
ADR \\ ADR ADR ADR ADR
4 PC REG wINST iADR| pINSTi+1 | uINSTi+2 | uINSTb+1 | uINSTb+2
ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
WINSTi=1| 4INSTi+ 1| wINSTb | kINSTb+1 | 4INSTb+2
PIPELINEREG | uINSTi—1| uINSTi | wINSTi+1| uINSTb | uINSTb+1
ALU EXECUTE | EXECUTE | EXECUTE | EXECUTE | EXECUTE
WINSTi—1| uINSTi pINSTi+1| wINSTb | uINSTb+1
(COND N
BRANCH): \
ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF | RESULT OF
pINSTi—-2 | wINSTi—1 | uINSTi pINSTi+1 | uINST b

ADVANCED MICRO DEVICES {1



1-1190 ED2900A 1-1190

FURTHER IMPROVEMENTS IN MICROPROGRAM CONTROL

ADVANCED MICRO DEVICES &1



1-1200 ED2900A 1-1200

ADVANCED MICRO DEVICES £



1-1210 ED2900A 1-1210

SUBROUTINE CONTROL FLOW (branching)

° There are cases where a branch to a routine and then a
return to the main microprogram flow upon the routine's
completion is desired. It may be desired to do this
branching from several different places in the main
program.

0 Subroutine organizations, as used in other programming
languages, provide a structured way of accomplishing this
task.

) The ability to perform nested subroutines is also desired,
that is, where one subroutine can call another subroutine
and so forth.

° Subroutines support structured programming concepts,
especially the implementation of modular code and
functionality.

] To facilitate these features, the following capabilities
are required to perform a subroutine (a branch and return
sequence):

- a stack to save the micromemory address

- a top-of-stack (T0S) pointer

- a means of accessing the top of the stack
through another input to the micromemory address MUX

logic to control the stack operations

ADVANCED MICRO DEVICES &1



LI SIDIAIA OWIW QIDNVAQY

i

INSTRUCTION REGISTER

MEMORY
MAP
OE TRI-STATE
cLock
2 s 0 wPC #PC REGISTER f——a——
— POLARITY LaGIC + s‘ MUx
Q
————--Y
INCREMENTER
CONDITIONAL
g MUX ’
——t 4 L i -
Pe Ve
MICROPROGRAM
— MEMORY
NEXT BAANCH
ADDRESS ]| POLARITY | CONDITION f‘?&:‘:& OTHER
SELECT SELECT
OE CLOCK
PlPELH‘iE REGISTER e e—
W
CONTROL
TRESTATE —= SIGNALS

02e1-1

V006203

02¢tI-1



1-1230

ED2900A 1-1230

SUBROUTINES:

Subroutines should be callable from anywhere in the
microprogram.

As with jumps/branches, subroutine calls can be conditional
or unconditional.

At the completion of the subroutine, control returns to the
main macroprogram statement following the calling statement.
This is an unconditional return.

A return can be permitted prior to the completion of the
subroutine based on some logical condition. This would be
by definition a conditional return.

Defined mnemonics are:
CJS - conditional jump subroutine
CRTN - conditional return

Assume forced TRUE conditions will be used to implement
unconditicnal calls and returns.

The "logic" will control PUSHing the return micromemory
address onto the stack and POPping the stack on return.

The POP operation logically connects the value (microaddress
on the top of the stack) to the S input on the microaddress
MUX.

ADVANCED MICRO DEVICES O\



1-1240 ED2900A 1-1240
1 S P A S

UNCONDITIONAL JSUB (CJS-PASS)

UNCONDITIONAL RETURN (CRTN-PASS)

MAIN
PROGRAM

SUBROUTINE

50
51
JSB 82

53
54
55 ,
56

JSB 57 (€

58
59
60
61

JSB: JUMP TO SUBROUTINE
RTS: RETURN FROM SUBROUTINE

RETURN ADDRESS STACK CONTENTS

START AFTER 52 AFTER 85 AFTER 57

A 53 A 58

)\ means “undef ined"

ADVANCED MICRO DEVICES ¢l



1-1250 £D23900A 1-1250

NESTED SUBROUTINES

o Occur where one subroutine calls another

8 The best way to handle multiple return addresses is via a
last in, first out stack and a top of stack (TOS) pointer

"TOP OF STACK" ~-->

A
/L /
POINTER (//////
g4
/)
/4
/4

STACK

TOS + 1

"PUSH" an address on the stack T0S

“POP" an address off the stack TOS = T0S - 1

ADVANCED MICRO DEVICES &1



1-1260 ED2900A 1-1260

MAIN
PROGRAM SUBROUTINE 2 SUBROUTINE 4
50 SUBROUTINE: 1 502 SUBROUTINE 3 780
51 88 503 720 781
52 Js;é’aﬁ 504 782
53 JSB S0 783
54 "~ 784
55 T @® 9 785
>8 RTS
57
58
JSB : JUMP TO SUBROUTINE
RTS: RETURN FROM SUBROUTINE
START AFTER 53 AFTER 89 AFTER 505 AFTER 722
54 %0 506 723 J=—— TOS
54 90 506
54 90
54

LIFO STACK CONTENTS

ADVANCED MICRO DEVICES &1



1-1270

EXAMPLE:

ED2900A 1-1270

The following microroutine demonstrates a subroutine call

and retu

NE

rn:

XT

ADDR

St

STRT: 31
32
32
33

L1: 104
105
L2: 106
107
108

L3: 547
548
549

LECT

CONT
CJp
CONT
JP

CONT
CONT
CJs

CONT
JMAP

CONT
CONT
CONT

P COND BR
0 MUX ADDR
L SEL
X X
TEST L1
X X
X L2
X X
X X
TEST L3
X X
X X
X X
X X
X X
PASS X “unconditional return"

550

CRTN

Possible next address controls for our CCU so far:

CONT

JP

cJap
JMA
CJds

CRT

[

Continue

Go to branch address

If condition true then go to branch address

Go to mapping PROM output (start address)

If condition true then go to subroutine address

1f condition true then go to <TOS>

ADVANCED MICRO DEVICES {1



1-1280 ED2900A 1-1280

LOOPS (ITERATION)

® There are many algorithms that require one or more
statements to be repeated for X number of times (DO loop)

® One way to implement a X-times loop is via a loop starting
address and a decrementing counter.
)] Example -
BEGIN LOOP:
REGISTER <--- START ADDRESS

COUNTER <-- X -1 note counter is 1 less
than times loop is executed

IF COUNTER = @ GO TO <uPC> (leave loop and continue)

IF COUNTER # @ GO TO <REGISTER>  (loop again at
START ADDRESS)

@ Note that loop‘'s starting micromemory address could also be
stored in the branch address field at the last microinstruction

in the loop instead of the register (an additional required
storage location).

¢ A loop may also occur where one or more statements are
repeated until some condition exists or event occurs
(referred to as DO-WHILE or DO-UNTIL loops).

IF TEST = TRUE GO TO <uPC>

IF TEST = FALSE GO TO <REGISTER>

ADVANCED MICRO DEVICES <1



1-1290 ED2900A 1-1290

LOOPS
LOAD REGISTER 50
T 52
LOAD COUNTER . 51
REGISTER
52
- X
PRIOR TO 53 @
START COUNTER
54 &
55 ¢
56 @ DECREMENT COUNTER
57 ¢
58 ¢
59
TEST 60
61 CONDITIONAL JUMP TO LOOP
IF COUNTER #£ 0
OR

IF CONDITION = FALSE

ADVANCED MICRO DEVICES &1



1-1300 ED2900A 1-1300
e 0 S S

MODIFIED SEQUENCER STRUCTURE FOR LOOP ITERATION:

® A counter was added to hold the loop count. A source is
needed to hold the original value of the count for transfer
to the counter. Another field in the microword could be
added. However, an overlapped or shared field could be used.

® A shared field is a field that has one meaning for some
operations and another meaning for other operations. Often
an extra bit is added to the microword to indicate which
meaning is being used, but in this case the next address
select field does the job.

. Sharing fields (also called vertical microprogramming)
should be used with care. However, the example under
consideration is commonly used with Am2900 parts.

@ The branch address field (which is only used during jump or
CJS instructions) is "overlapped" with the counter value
field. Note that the count is thus limited to n bits.

® Some type of next address select code is needed that will
determine the location (register, microinstruction, stack)
of loop starting address.

e Finally, an extra tri-state enable is added for flexibility
for selecting other external microaddress values. In this
development, it will be used for enabling interrupt vectors.

ADVANCED MICRO DEVICES <1



1-1310

ED2900A

Complete CCU

l

INSTRUCTION REGISTER

1-1310

CLOCK

OTHER

| cLOCK

OTHER
ADDRESS B8OURGE l
MEMORY
MAP
o€ }ea——— TRI-STATE
cLocK cLocK 108
REGISTER §~o— POINTER
{
o i
COUNTER
STACK
LOAD, EN 2
COUNTER = 0 A . N |
2 5 b 8 upc uPC REGISTER
POLARITY LOGIC —— s‘
0
— !
INCREMENTER
—~*1 CONDITIONAL
—_— MUX }
————— ‘4/ L/
= MICROPROGRAM
—] MEMORY
NEXT BRANCH
AODRESS | POLARITY | CONOITION ::;,:‘Ecs';
SELECT SELECT
O
PIPELINE REGISTER

n
-

TRESTATE ——

|

CONTROL
SIGNALS

ADVANCED MICRO DEVICES 1



1-1320 ED2900A 1-1320
Y S P

SEQUENCER NEXT ADDRESS CONTROL

0 The next figure presents the logic block diagram for next
address control. The following signals are thus defined:

© Inputs:
- Next address select from pipeline (microword) - assume
4-bits will suffice

- Condition code; - output of condition code MUX

- OE (low); - allows all outputs to be tri-stated

° Outputs:

I

Three output enables for tri-state sources
MAP - for mapping PROM
PIPELINE - for pipeline branch address field

VECT - extra (intended for interrupt vectors)

- MUX select for control of the micromemory address MUX

- Counter load and enable for loop counter control

- FE file enable causes a stack operation

- PUP determines stack push or pop

ADVANCED MICRO DEVICES 1



1-1330

NEXT ADR SELEC

ED2900A

1-1330

Summary of Next Address Control

T
—ln

4

COND MUX OUTPUT

—t

Ot

Logic Block
—> Oyt
— OEyap
= OEprpELINE
%% NUX SELECT
L0GIC FE FILE ENABLE (STACK)

— PUP PUSH/POP

COUNTER
LOAD

— COUNTER ENABLE

.

ADVANCED MICRO DEVICES Q1



1-1340 ED2900A 1-1340

ADVANCED MICRO DEVICES <1



1-1350 ED2900A 1-1350

CCU IMPLEMENTATIONS

USING Am2900/Am29100 FAMILY PARTS

ADVANCED MICRO DEVICES {1



1-1360 ED2900A 1-1360

MICROSEQUENCER SELECTION

] There are three choices of Am2900 chip sets available for
implementing a control unit.

° The first consists of the Am2910 microprogram controller.

] The second is the Am29112 microprogram controller.

® The third consists of the Am29811 next address control unit
with either the Am2909 or Am2911 microprogram sequencer
(bit slice).

ADVANCED MICRO DEVICES 1



1-1370 ED2900A 1-1370
-

PRIMARY DIFFERENCES BETWEEN APPROACHES

Am2910

® The Am2910 is a single package, containing sequencer, next
address control logic, and a combined counter/register.

® The Am2910 is not a bit-slice, but has a 12-bit micromemory
address output (4K micromemory addressing).

e The Am2910 includes vector-enable output

Am29112

o The Am29112 is similar to the Am2910 in general structure,
but is an 8-bit slice expandable to two for addressing 64K
of micromemory.

° The Am29112 stack is 33 registers deep.

) The Am29112 also features direct, multiway, relative and
program-counter-relative addressing modes, along with vectored
interrupts.

(The Am2910 will be emphasized with possible alternate
capabilities discussed with the Am29811 and the Am2909/2911
and the Am29112)

ADVANCED MICRO DEVICES <1



1-1380 ED2900A 1-1380

Am2909/2911 SEQUENCERS

0 The Am2909/2911 is a 4-bit sequencer slice, allowing any
width of microprogramming addressing and requires next
address control logic.

® The Am2909 has four input bits OR'ed with 1ts output for use
with the Am29803 for doing 16-way branches (case statement).

® The Am29811 next address control logic has the same
instruction set as the Am2910 except for the Am2910's
three-way-branch.

ADVANCED MICRO DEVICES &1



LY $S32IA3a OWIW QIDINVAQY

INSTRUCTION REGISTER

|

MAP

CEMAP

IRPT.
REG.

- OEvecr
M
Cp
VEC
POLARIT?
et
ANY
e
-

———] ] 5
—={ IRPL. PRIORITY —1 Bx

~] REQ. ENCODER —| g%
] ——] 8
| pu——
— —y

MICROPROGNRAM MEMORY

PIPELINE REGISTER

CONTROL
SIGNALS

Cp

06ti-1

V006203

06eT1-1



12 $3J1A3A OUDIW AIDINVAAY

I

"INSTRUCTION REGISTER

i

MEMORY
MAP

oE

TC CLOCK
COUNTER e
Am29811A
—]
POLARITY
—]
—] coNDITIONAL Cour
— MUX ey
— B
——- vI
—— MICROPROGRAM
MEMORY
NEXT BRANCH
ApDRESS | PoLARITY | conpimion| STUNCH. | oTHER
SELECT SELECT

!

!

1

!

PIPELINE REGISTER

I CLOCK

l

CONTROL
SIGNALS

T162un//6062MM

00t1-1

V006203

oovT-1



1-1410

ED2900A

OEygcr

DECODE | _ Otmap

IR

MAP

1-1410

¥

¥

¥

—

COND
MUX

s

POL

—

2909 -

2909

2909

29811A

)

A

A

!
y

MICRO
MEMORY

OE

¥

(L

PIPELINE

I——|
|

IR

MAP

COND

MUX

POL

Am2910

MAP

MICRO
MEMORY

y

|

PIPELINE

e

—l

OEyecr

OEp_

ADVANCED MICRO DEVICES &1



1-1420 ED2900A 1-1420
[ S S

Am29112 in a Single Pipelined System

EMERGENCY FIFO
DETECT
CIRCUIT
D
-u—’—"
&1 | vecroren INT REQ Am29112 ce | conomon | !
2! | erionry NT ACK INTERRUPTIBLE CODE |
@ | | NTERRUPT c MICROPROGRAM MUX
E| ncomnou.sj SEQUENCER [
zl | L
OE Y
VECTOR
MAP
PROM

MICROPROGRAM

PIPELINE REGISTER

| l

ADVANCED MICRO DEVICES 1



1-1430 ED2900A 1-1430

SUPERSEQUENCER

Am2910

ADVANCED MICRO DEVICES <V



1-1440

£D2900A

Am2910 DISTINCTIVE CHARACTERISTICS

Twelve bit address output

Four address sources - D, R, File (Stack output), uPC

Internal loop counter

Five deep subroutine stack - Am2910, nine deep - Am2910A

Conditional test input

Sixteen powerful microinstructions

E for three next address jump sources

Fast microprogram execution

Additional control pins
(discussed in detail later)

RLD - register latch

CCEN - for forced pass

Cl - for inhibiting incrementer

1-1440

ADVANCED MICRO DEVICES &1



1-1450 ED2900A 1-1450
Am2910
Di CPQ
12
RLD —_—
= REGISTER/ STACK __DFULL
COUNTER < POINTER ‘
R >
ZERO
;> DETECTOR T
‘5§ WORD X 12 BIT
l r—> STACK
ouT
IN F
Eo u ~
53
© s D R F uPC MICROPROGRAM
o E a o1 MULTIPLEXER COUNTER-
S :c_é REGISTER JPC
NEE il
— &
CcC
Q o
ED . | INCREMENTER |—<
o
CCEN '5< PUSH/
2 POP/HOLD/CLEAR
-
. 14 .
o4 z CLEAR/COUNT
OE
o T
000 ” :
2 & lg i
= >

ADVANCED MICRO DEVICES &1



1-1460 ED2900A 1-1160
e 5 S

An2910 INSTRUCTION SET SUMMARY
START:
Jz Jump Zero (Reset)

SEQUENCE:
CONT Continue

BRANCH:

JMAP  Jump Map

CJP Conditional Jump to Pipeline

CdV  Conditional Jump to Vector

JRP  Conditional Jump Register or Pipeline

CJPP Conditional Jump to Pipeline and POP Stack
SUBROUTINE:

CJS Conditional Jump to Subroutine (CJP and PUSH)

JSRP Conditional Jump to Subroutine where Start Address
is the Register or Pipeline

CRTN Conditional Return
LOOPING:
LOCT Load Counter and Continue

PUSH Push Micro-PC on Stack, Conditional Load Counter
and Continue

@, Start Address on Stack

RPCT Repeat Loop if Counter

LOOP Repeat Loop until TEST = TRUE, Start Address on Stack

TWB  Repeat Loop if TEST = FALSE and Counter = @

ELSE IF TEST = FALSE and COUNTER = @, Go to Pipeline

ELSE IF TEST

: TRUE Continue

ADVANCED MICRO DEVICES 1



1-1470

ED2900A

Am2910

1-1470

0 JUMP ZERO (42}

o
1
2

1 COND JSB PL (CJS)

50 STACK
5

52 (¢ %

53 9

54 92

55 93

2 JUMP MAP {JVAP)

50

51

s2

53 90
]

3 COND JUMP PL (CW)

50

51

12

53

54 30
kil

4 PUSH/COND LD CNTR (PUSH)

STACK

REGISTER
COUNTER

§ COND JSB R/PL (JSRP)

6 COND JUMP VECTOR (CJV)

50
51
52
53 20
54 2

7 COND JUMP R/PL (JRP)

50

51

52

53
70 80
n 81

8 REPEAT LOOP, CNTR # 0 (RFCT)

STACK
(PUSH)
50
REGISTER/
51 COUNTER
52
53
64
55

8 REPEAT PL,CNTR # 0 (RPCT)

COUNTER
50 {LDCT)
51
52
53

10 COND RETURN (CRTN)

11 COND JUMP PL & POP (CJPP)

STACK
0 {PUSH)
51
52 70
53 (& 20 n
54 C) $ 80 91 72
55 @— fal 92
56 @ 82

12 LDCNTR & CONTINUE (LDCT)

50 COUNTER
5
52
53

STACK
50
51 90
52 91
53 92
54 93
55 94
25
96
97

13 TEST END LOOP (LOOP)

14 CONTINUE (CONT)

51
52

15 THREE-WAY BRANCH (TWB)

STACK
62 {PUSH}
63 REGISTER/
64 COUNTER

5 (- ; 7
73

S0 STACK
51 {PUSH}
52
53
54
55
6
57

ADVANCED MICRO DEVICES &t




1-1480 ED2900A 1-1480

JdZ  Jump to Address Zero

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR MuX ADDRESS
0 START: CONT # # {mmmmmeamn Start Address
1 CONT # #
2 CONT # #
n JZ # # {mmmmmme Hardwired Start Address

CONTO @ FROM SPECIAL ADDRESS OR RESET OF
CONT 1 ‘\Qj_z/mpﬂme REGISTER. EITHER SEND 000
= (JZ) TO Am2910 OR THE INITIALIZATION
(START. RESET) COULD SEND ADDRESS FFF
INTO MICROMEMORY. JZ SHOULD BE PLACED

THERE. JZ RESETS THE STACK AND SHOULD
BE EXECUTED FIRST.

cc COUNTER = 0 STACK ADDRESS REGISTER OE
LINE SOURCE COUNTER
X X CLEAR 0 NC PL

Figure 4-9. Jump zero (JZ. 0).

ADVANCED MICRO DEVICES &1



1-1490 ED2900A 1-1490

JZ

< DATA BUS

INSTRUCTION REGISTER
opcoDE | omer
8 I l
y S
J 7

ADDRESS - | 2910
3-amz7s21 | O —'—‘
MAPPING PROMS
output REGISTER/ STACK
COUNTER POINTER
12,
SUBROUTINE
- AND LOOP STACK
CARRY emaawad . g '
[ve}
ZER) emeed § S
SI6N 5 CEe MICROPROGRAM
— §§§ COUNTER REGISTER
MR s 4 E 5 Nl
CEE 2
T aee] 3 3% Z .
ETC - bR E B .
—1 2 NEXT ADDRESS *
) MULTIPLEXER NCREMENT
[ OUTPUT ER

| = ]

. | |
TEST

y CONTROL

41CROPROGRAM MEMORY
Am27527
£ PIPELINE REGISTER
! BRANCH NEXT OTHER
ADDRESS ADDRESS SELECT
12 JV A’

An2901 OR
An2903

ADVANCED MICRO DEVICES {1



1-1500 ED2900A 1-1500

CONT Continue to Next Instruction in Sequence

ADDRESS LABEL 2910 COND  BRANCH

(HEX) INSTR MUX  ADDRESS
50 CONT # #
51 CONT # #
52 CONT # # Sequential Program Flow
53 CONT # #
CONT 50
CONT 51 (§) SEQUENTIAL
CONT 52 PROGRAM
CONT 53 FLow
cc COUNTER = 0 STACK ADDRESS REGISTER! OE
LINE SOURCE COUNTER
X X NC uPC NC PL

Figure 4-10. Continue (CONT. E).

ADVANCED MICRO DEVICES <1



1-1510

CARRY
OVR
ZERD
SIGN
INTR
ETC
ETC

ED2900A

CONT

DATA BUS

&

INSTRUCTION REGISTER

op coDE | omHER

| |

i

|1

= N W e N o

CONDITION CODE
MULTIPLEXER
AND POLARITY

ADDRESS
3-An27521 OF 1 Anz910
MAPPING PROMS
0UTPUT REGISTER/ STACK
COUNTER POINTER
12
SUBROTINE
e AND LOOP STACK
2y
~~
MICROPROGRAM
COUNTER REGISTER
D R F l
NEXT ADDRES
MULTIPLEXE %
LIIeL ])l“EMENTER
i |
TEST

1-1510

CONTROL
ADDRESS
'MICROPROGRAM MEMORY
Am27527
£ PIfELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
12 lr 41

Am2901 OR

Am2903

ADVANCED MICRO DEVICES &1



1-1520

JMAP

ED2900A

1-1520

Jump to Start Address (Enable Mapping PROM)

ADDRESS LABEL 2910 COND  BRANCH
(HEX) INSTR MUX  ADDRESS
50 CONT  # #
51 CONT # #
52 CONT  # #
53 JMAP  # # Address supplied by Map
CONT 50 i
CONT 51
b 29 4—S0TO__ o g0 cont
} 91 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER! OE
LINE SOURCE COUNTER
X X NC D NC MAP
Figure 4-11. Jump map (JMAP. 2).

ADVANCED MICRO DEVICES {1



1-1530 ED2900A 1-1530
< DATA BUS >
INSTRUCTION REGISTER
opconE | omwer
8
— B ;
ADDRESS _
oF An2910
3-ame7szy | O '——"
HAPPING PROMS - Kg~]
0uTPUT REGISTER/ STACK
COUNTER POINTER
12 )
L
\ SUBROUTINE
) - AND LOOP STACK
e Rt ¢
(i}
ZERD emmemmed 6 S
Cne MICROPROGRAM
St —] 5 = 9‘3 COUNTER REGISTER
MR ] ¢ EEE
£%s
T ] 3 %3 . T
PC
EIC  ef 2 Mext Annness
. ULTIPLEXER INCREMENTER
- I oUTPUT EMEN
i \L_ YA
- | |
oc
TEST
CONTROL
'f
ADDRESS
MICROPROGRAM MEMORY
Am27527
E PIPELINE REGISTER
1
BRANCH NEXT
d ADDRESS ADDRESS SELECT OTHER
12 ¥ A
Am2901 OR
Ax2903

ADVAN

CED MICRO DEVICES <1



1-1540

ED2900A

CJP Conditional Jump to Branch Address (Pipeline)
ADDRESS  LABEL 2910 COND  BRANCH
(HEX) INSTR  MUX ADDRESS
30 LABELA: CONT # #
31 CONT # #
50 CONT # #
51 CONT # #
52 CJdP TESTA LABELA
53 CONT  # #
54 CONT # #
CONT 50
CONT 51
IF TEST CJP 52 >
CONT 53 Ss
CONT &4 FAIL 30 CONT
31 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER. OE
LINE SOURCE COUNTER
iﬁf X NC “Ec NC PL
Figure 4-12. Conditional jump pipeline (CJP. 3).

1-1540

ADVANCED MICRO DEVICES <1



1-1550 ED2900A 1-1550
< DATA BUS >
INSTRUCTION REGISTER
op CoDE | OTHER
8
— I ;
ADDRESS
910
3-An27521 OF ] Az
MAPPING PROMS - I ]
oUTPUT REGISTER/ STACK
COUNTER POINTER
12 4
\_ SUBROUTINE
7 AND LOOP STACK
CARRY wmmead . g : r P 5-
OVR cmvmmed' 7 12 Al r _ﬂ
TR ] 6 B FAL
. Cxo MICROPROGRAM
SN ——15 553 COUNTER REGISTER
INR cmemad 4 ER&
=) E [=) .
ETC . e} 3 § 2
ETC 2 ! ¥ P(E >
TC ] XT ADDRE
1 LTIPLEX .
' ; LIIPLE INCREMENTER
Ny 4 ]
-
g 4 ' 1
TEST ce
4.', — CONTROL ‘
<2
K .I" :
ADDRESS
'MICROPROGRAM MEMORY
Am27527
T PIPELINE REGISTER
1
BRANCH NEXT
-——-H ADORESS ADDRESS SELECT OTHER
I 12 {
e
Am2901 OR
Am2903

ADVANCED MICRO DEVICES <1



1-1560 ED2900A 1-1560

CJV  Conditional Jump to Vector Map Output
ADDRESS LABEL 2910 COND  BRANCH
(HEX) INSTR  MUX ADDRESS
20 CONT # #
21 CONT # #
50 CONT # #
51 CONT # #
52 CJv ANYI # <--- Branch Address from Vector Map
53 CONT # #
54 CONT  # #
CONT 50
ZONT 51
IF TEST  CJV 52 ¢__Pagg
CONT 53 \} 20 CONT
CONT 54 ¢ FAIL 21 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER’ OE
LINE SOURCE COUNTER
F;‘i‘\?f X NC #gc NC VECT
Figure 4-13. Conditional jump vector (CJV. 6).

ADVANCED MICRO DEVICES (1




1-1570

ED2900A

CJv

1-1570

DATA BUS (18 BITS)

U

INSTRUCTION
REGISTER

MICROPROGRAM
MEMORY

‘ {

OTHER STATUS

| Am2922
CONDITION
CODE MUX

OE

PIPELINE
REGISTER

Poy

INTERRUPT
REQUESTS

OTHER

ADVANCED MICRO DEVICES <1



1-1580 ED2900A 1-1580
0 s

LDCT Load the Register/Counter and Continue

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR  MUX ADDRESS
50 CONT # #
51 LOCT  # VALUE-1
52 CONT # #
53 CONT # #

CONT 50 @
LDCT 51 "

CONT 52 REGISTER
CONT 53 COUNTER

cc COUNTER = 0 STACK ADDRESS REGISTER;, OE
LINE SOURCE COUNTER
X X NC uPC LOAD PL

Figure 4-14.  Load counter and continue (LDCT. C). This instruction must be
executed before a loop instruction or a jump which used the register.

ADVANCED MICRO DEVICES &1



1-1590 ED2900A 1-1590
< DATA BUS >
INSTRUCTION REGISTER
0P CODE | ot
— I 1
ADDRESS - An2910
3-ame7szy  § O
MAPPING PROMS -
ouTPUT REGISTER/ STACK
COUNTER POINTER
12
SUBROUTINE
AND LOOP STACK
CARRY swmmsmemi. g
OVR el 7 J12
ZERD - cemeed 6 §5C
S5 MICROPROGRAM
SIEN ] § EEQ COUNTER REGISTER
INTR cmmeed 4 SO
DEC}
ETC . o] 3 § H]
N G
ETC |, ] 2 NEXT ADDRES
MULTIPLEXE INCR
‘ F— ! oUTPUT ENTER.
4
i | 1
TEST
, CONTROL
L4
[ 4
‘-
ADDRESS
MICROPROGRAM MEMORY
An27527
£ PIPELINE REGISTER
1 BRANCH NEXT
~o  aooRess ADDRESS SELECT OTHER
122 ¥ b d
AD DR. aﬂ—v&-‘:—-——
Am2901 OR
An2903

ADVANCED MICRO DEVICES &1



1-1600 ED2900A 1-1600

JRP  Conditional Jump to Register or Branch Address (Pipeline)

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR  MuUX ADDRESS

27 LDCT # REGADR <--- Load Address into Register:
50 CONT # #

51 CONT # #

52 CONT # #

53 JRP TESTB PIPEADR <--- If True Go To PIPEADR:

70 REGADR: CONT # #

71 CONT # #

80 PIPEADR: CONT # #

81 CONT # #

LDCT 27 4——@ REGISTER/COUNTER

CONT 50
CONT 51
CONT 52
IF TEST JRP 53 &

ADDRESS 80 FROM PIPELINE:

ADDRESS 70 FROM REGISTER: CONT 70 80 CONT
CONT 71 81 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER) OE
LINE SOURCE COUNTER
PASS D
FAIL X NC R NC PL

Figure 4-15. Conditional jump register/pipeline (JRP, 7). LDCT must have been
executed somewhere ahead of JRP.

ADVANCED MICRO DEVICES 1



1-1610

CARRY
OVR
ZERO
SIGN
INTR
ETC
ETC

ED2900A

JRP

<

DATA BUS

INSTRUCTION REG!STER
OPCODE |  OTHER
8
— ] ;
ADDRESS
910
s-marsz | OE | 2
MAPPING PROMS
OUTPUT REGISTER/ STACK
COUNTER PDINTER
12
FAIL-
SUBROUTINE

LN W R Y N N

CONDITION CODE
MULTIPLEXER
AND POLARITY

o [

cC
TEST

AND LOOP STACK

MICROPROGRAM
COUNTER REGISTER

¥

F
OURPUT

XTAADDRESS
UL TR PLEXER

PC

CONTROL

INCREMENTER

ADDRESS
MICROPROGRAM MEMORY

An27527
- PIPELINE REGISTER
1
BRANCH NEXT
ADQRESS ADDRESS SELECT OTHER

12 Yy

y

1-1610

Am2901 OR

Am2903

ADVANCED MICRO DEVICES {1



1-1620 ED2900A 1-1620
{0 S S

CJS Conditional Jump to Subroutine Address

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR MUX ADDRESS

50 CONT # #

51 CONT # #

52 CJs TESTC SUBADR <--- GOSUB if True

53 CONT # # {--~ Where SUB Returns
54 CONT # #

55 CONT # #

90 SUBADR:  CONT

# #
91 CONT # #
92 CONT # #
93 CRTN PASS # <--- Unconditional Return

PASS  PUSH ON TO
CONT 50 STACK
CONT 51 /,@
tF TEST CJS 52 xi"——Aﬂ-«- 90 CONT SUBROUTINE START ADDRESS
CONT 53 u 91 CONT COMES FROM BRANCH ADDRESS FIELD
QgTUQN

CONT 54 92 CONT
CONT 55 93 CRTN

cc COUNTER = 0 STACK ADDRESS REGISTER: 3
LINE SOURCE COUNTER
PASS PUSH D
X
FAIL NC uPC NE PL

Figure 4-16. Conditional jump subroutine from pipeline (CJS, 1).

ADVANCED MICRO DEVICES <1



1-1630 ED2900A 1-1630

CJS

< DATA BUS >

INSTRUCTION REGISTER
OP CODE | OTHER

81 l l

‘ L4
ADDRESS - 2910
samzrsz | O ..___j
MAPPING PROMS
ouTPUT REGISTER/ STACK
COUNTER POINTER
2, men ON PASS
SUBROUT INE
AND LOOP STACK
CARRY emmmeend. g * P Sis
R e’ 7 12 ' PusHyoN PAsS
2RO ] 5 By FAIL
S1EN s oum MICROPROGRAM
— &z3 COUNTER REGISTER
MR ! ¢ EEE Y]
[~] o
[3 (S} é"gé
ROF fe
ETC e} 2 * EXT ADDRES
1 ULTIPLEXE INCREMENTER
E"‘ . | OUTPUT
) \L JJ
4
cc
&- cc
. CONTROL
L4
ADDRESS
WMICROPROGRAM MEMORY
An27527
T PIPELINE REGISTER
1
BRANCH NEXT
< ADDRESS ADDRESS SELECT OTHER
svg :l-o-on i § 1
Am2901 OR
Am2903

ADVANCED MICRO DEVICES 1



1-1640 ED2900A 1-1640
s A

JSRP Conditional Jump to Subroutine (Register or Pipeline)

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR  MUX ADDRESS
30 LDCT  # SUBADRF <--- Load Register with
. Subroutine Address
51 CONT # #
52 CONT # #
53 CONT # #
54 JSRP  TESTE SUBADRT <--- If TRUE, go to SUBADRT
55 CONT # # {-~- Where Subroutine Returns
80 SUBADRT: CONT # #
81 CONT # #
82 CONT # #
83 CONT # #
84 CRTN  PASS # {--~ Unconditional Return
390 SUBADRF: CONT # #
91 CONT # #
92 CONT # #
g3 CONT # #
94 CRTN  PASS # {-~- Unconditional Return
cc COUNTER = 0 STACK ADDRESS REGISTER OE
LINE SOURCE COUNTER

FAIL x PUSH R

LDCT 30 i*ﬂ
PASS D NC L @ REGISTER

Figure 4-17. Conditional jump subroutine register/pipeline (JSRP, 5). LDCT or a gg:T 2; busH |
register load must occur somewhere prior to JSRP. CONT 53 PASS g: L?ILSTACK

IF TEST JSRP 54
START ADDRESS

FROM REGISTER: CONT 90 ¢~ VA
CONT 91 ¢ CONT 58
CONT 92
CONT 93
CRTN 94

80 CONT START ADDRESS
81 CONT FROM BRANCM
82 CONT ADDRESS FIEL .
83 CONT
84 CRTN

CONT 56

ADVANCED MICRO DEVICES 1



1-1650 ED2900A 1-1650

JSRP

< DATA BUS >

INSTRUCTION REGISTER
OP CODE )  OTHER

— I ;

3A:szR;sszs1 0 ‘ Anz910
MAPPING PROMS [ | svs. apba.
OUTPUT REGISTER/ STACK
COUNTER POINTER
12", ]
FAIL 1 Sl
SUBROUTINE
AND LOOP STACK
CARRY sumwwwemed . g pn s F l
o ] 7 12 ] PVUSH
TR0 e § B
S1Gn s oag MICROPROGRAM
— ggg COUNTER REGISTER
INR a4 EHE "“
[=] [~}
ETC ] 3 B%2 l Y
ETC - LAe
] 2 X1} ADDRESS
. ULEIPLEXER INCREMENTER
[' ofTPUT
-
4
cC
s \ TEST cc
- CONTROL
1
FDDRESS
‘MICROPROGRAM MEMORY
| Am27527
£ PIPELINE REGISTER
1 BRANCH NEXT OTHER
ADDRESS ADDRESS SELECT
12y y 4
VB, ADDR .

i 1]
Am2901 OR
Am2903

ADVANCED MICRO DEVICES 1



1-1660 ED2900A 1-1660
1 S S

CRTN Conditional Return from Subroutine

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR MUX  ADDRESS
50 START CONT # #
51 CONT # #
52 CJs TESTF  SUB90
53 CONT # #
54 CONT # #
55 CONT  # #
90 SUB90: CONT # #
91 CONT # #
92 CONT # #
93 CRTN  TESTG # {~-~ Return to TOS on TRUE
94 CONT # #
95 CONT # #
96 CONT  # #
97 CRTN PASS # {--- Unconditional Return
@ STACK
CONT 50 PASS
CONT 51 / 90 CONT
CJS 52 Z 91 CONT
CONT 53 =/ i 92 CONT
CONT 54 & 93 CRTN CONDITIONAL RETURN
CONT 55 FAIL @ 94 CONT
K ) 95 CONT
96 CONT
™ 97 CRTN UNCONDITIONAL RETURN
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS X POP STACK NC PL
FAIL NC uPC
DISABLE
(CCEN = H x POP STACK NC PL
ORCC = L)

Figure 4-18. Conditional return (CRTN, A).

ADVANCED MICRO DEVICES 1



1-1670

CARRY
OVR
ZERO
SIGN

INTR |

ETC
ETC

PASS
OoOn i
Am 24910

ED2900A

CRTN

1-1670

DATA BUS

¢

INSTRUCTION REGISTER

opcoE | omer
8
— B |
ADDRESS - | 2910
3-Am27521 : —_‘
MAPPING PROMS - [™ .
ouTPUT REGISTER/ STACK ECR on
COUNTER POINTER PASS
12, l
4
SUBROUTINE BP on
7 AND LOOP STACK PASS
et g
v—y ' 7 . 12 'f
— § B
g} 4 MICROPROGRAM
—_ s 1% COUNTER REGISTER
— 4 EER —1
— 3 5FF ﬂ'
8 D
N e NEXT ADPRE
. MULTIRL EX INCREMENT
g oUTRuT ER
=
4 s ’
@ I
TEST cc
CONTROL
4
: »"
AODRESS
'MICROPROGRAM MEMORY
An27527
z PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS  SELECT OTHER
it 4 J 4
L——— TD
Am2901 OR
Am2503
uncond RTN : choose MUX SEL = 1 or CCEN = HIGH

ADVANCED MICRO DEVICES {1



1-1680 ED2900A 1-1680
A S S

RPCT Repeat Loop Until Counter = §; Start at Branch Address

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR  MUX ADDRESS
25 CONT # #

26 LDCT  # VAL-1
27 CONT  # #

47 BEGIN: CONT # #

48 CONT  # #

49 CONT # #

50 RPCT # BEGIN

Or the One-Line Loop Version

50 CONT # #
51 LDCT  # VAL-1
52 BEGIN: RPCT # BEGIN
53 CONT  # #
CONT 25 ;/ @ REGISTER.
LDCT 26 - COUNTER
. REGISTER:
CONT 47 CONT 50 COUNTER
CONT 48 oR LDCT 51
CONT 43 RPCT 52 (i
RPCT 50 (¢ CONT 53
CONT 51
cc COUNTER = 0 STACK ADDRESS REGISTER! OE
LINE SOURCE COUNTER
=0
PC NC
X #0 NC “o DECREMENT PL
(PART OF
INSTR. PLA)

Figure 4-19. Repeat pipeline if counter # 0 (RPCT. 9). (Loop on one or more
statements, beginning address of loop in pipeline fat RPCT statement].)

ADVANCED MICRO DEVICES O



1-1690 EDZ2900A 1-1690

RPCT

¢ DATA BUS >

TRSTRUCTION REGTSTER
opCoDE | oOTHER
— I !

ADDRESS
An2910
MAPPING PROMS -
ouTPUT REGISTER/ CNTR :le ¢ STACK
COUNTER POINTER
12
msusgggnnsc
D LOOP STACK
CARRY emmmsmend, g Cr"”"z 17* ’Zs
OVR emmmeasd 7 12 :
w
TER) et § S
SIN ] 8 :§§ MICROPROGRAN
8za COUNTER REGISTER
INR | ey 4 S5 6
(=) (=]
ETC . commmd 3 525
3 [J— .
; 1 INCREMENTER
) T
cc
TEST
4, CONTROL
[ 4
129
'M-———h
ADORESS
'MICROPROGRAM MEMORY
Am27527
£ PIPELINE REGISTER
1
BRANCH NEXT
9 ADDRESS ADDRESS SELECT OTHER
12 P A’

Am2901 OR
Ai2903

ADVANCED MICRO DEVICES <1



1-1700 ED2900A 1-1700
1 £ s S

PUSH Push Microprocessor to TOS and Continue;
Load Register/Counter Maybe

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR  MUX ADDRESS

50 CONT # #

51 CONT # #

52 PUSH TESTH VAL-1 <--- The result of TESTH only
53 CONT  # # controls the Register Load

PUSH may place an address or a value into the Register/Counter
depending upon the value of TESTH.

PUSH is an unconditional push of the microprogram counter onto the
stack.

Instruction execution then continues.

PASS OR FAIL
CONT 50 4

/ @STACK
CONT 51 e

IF TEST  PUSH 52 Pasg
CONT 53 ‘\@ REGISTER COUNTER
cc COUNTER = 0 STACK ADDRESS REGISTER- OE
LINE SOURCE COUNTER
PASS LOAD
P
AL X PUSH uPC NC PL

Figure 4-20. Push stack and conditional load counter (PUSH, 4). This instruction
must immediately precede the first statement in a loop controlled by LOOP or RFCT.

ADVANCED MICRO DEVICES



1-1710 ED2900A 1-1710

PUSH

¢ DATA BUS : >

INSTRUCTION REGISTER
0P CODE | OTHER

> |
i !

ADDRESS
Am2910
3.amz7s21 | OF F_'_l LD I1F PAss
MAPPING PROMS
ouTPUT REGISTER/ STACK
COUNTER POINTER
12
T I INCR
SUBROUTINE
AND LOOP STACK
CARRY xm— 8 . q
OVR e * 7 a2 ' pUS”
ZERD - ] 6 égt ’
OnE MICROPROGRAM
SIGN  memrma] 5§ Ex3 COUNTER REGISTER
IR ] 4 & F
oDo0
T ] 3 BEZF
1 ° b R F e _
ETC ] 2 NEXT ADDRE
. MULTIPLEMER INCREM
I oo NTER
- &
| |
cc
s TEST cc
z CONTROL
L4
4 4
‘"
B B
PRV S
Aonk‘sss
WICROPROGRAM MEMORY
An27527
£ PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER ‘
12 F AV l
Am2901 OR
An2903

ADVANCED MICRO DEVICES <1



1-1720 ED2900A 1-1720
0 0 S S S

RFCT  Repeat Loop until Counter = @; Start Address is T0S

ADDRESS LABEL 2910 COND  BRANCH

(HEX) INSTR MUX ADDRESS

50 PUSH PASS VAL-1 <--- Counter is 1 less than
51 BEGIN: CONT # # desired repeats

52 CONT # #

53 CONT # #

54 RFCT # # {--- Return to TOS

55 CONT # #

RFCT can also be used to form one-line loops.

@ sTack (PUSH ON PUSH: REFERENCE

TS INO POP] ON RFCT AND
PUSH \ COUNTER = 0. POP ON RFCT
MUST IMMEDIATELY BUSH 50 AND COUNTER = 0)
PRECEDE THE FIRST REGISTER:
STATEMENT IN LOOP CONT 51 COUNTER
~ CONT 52
o (LOAD ON PUSH; DECREMENT
CONT 53 ON RFCT IF COUNTER = 0}
IF TEST RFCT 54
CONT 55 I
cc COUNTER = 0 STACK ADDRESS REGISTER. 3
LINE SOURCE COUNTER
=0 POP uPC NC
X #0 NC STACK DECREMENT PL

Figure 4-21. Repeat loop from stack if counter = 0 (RFCT, 8).

ADVANCED MICRO DEVICES <1



1-1730 ED2900A 1-1730
< DATA BUS
INSTRUCTION REGISTER
0P CODE | OTHER
8
— | |
ADDRESS
Am2910
3-aers21 | OF ——
MAPPING PROMS -
ouTPUT REGISTER/ STACK
COUNTER POINTER
12y l
eNTR # ¢ £
\\ # SUBROUTINE OR 1 ¢
e AND LODP STACK | CINT R =
umy oxmmm— a
OYR eomee—ed' 7 . 12 A’
20 ] 5 Her CNTR = ¢
One MICROPROGRAM
STEN et § =3 COUNTER REGISTER
INTR coscssemeed 4 O
a0
ETC  cmmmeed 3 §=E
£Te D R F PC o
—f 2 NexT afogss
1 MULTIFMEXER
-;_ LIigk INCREMENTER
T 1 | |
cc ‘[
TEST
. CONTROL
7
Py
N
ADDRESS
*MICROPROGRAM MEMORY
AR27527
T PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
I 4 P d

Cemem T()

Am2901 OR

Am2903

ADVANCED MICRO DEVICES &1



1-1740 ED2900A 1-1740
g 0 e 40 A

LOOP Repeat Loop until TEST = TRUE

ADDRESS  LABEL 2910 COND  BRANCH

(HEX) INSTR MUX ADDRESS
50 CONT # #
51 PUSH  FAIL # {--- Register/Counter not used
52 BEGIN: CONT # #
53 CONT # #
54 CONT # #
55 CONT # #
56 LOOP  TESTI # {~--- Go to TOS
57 CONR # #
T TTEONT S0 STACK
PUSH MUST PRECEDE THE PUSH 51
FIRST STATEMENT IN LOOP CONT 52 (PUSH ON PUSH; REFERENCE [NO POP]

ON LOOP AND TEST = FAIL; POP ON

S~ —"CONTS53
ON LOOP AND TEST = PASS)

CONT 54
CONT 55

IFTEST LOOP 56 « FAIL
CONT 57 PASS

cc COUNTER = 0 STACK ADDRESS REGISTER: OE
LINE SOURCE COUNTER
PASS pPOP uPC
FAIL X NC STACK NC PL

Figure 4-22. Test end of loop (LOOP, D). Must be preceding first stalement in loop.

ADVANCED MICRO DEVICES &1



1-1750 ED2900A 1-1750

LOOP

< DATA BUS >

INSTRUCTION REGISLI'ER
OPCODE |  OTHER
8 | ‘
- ] .
‘ L4

ADDRESS - 2910
3-Am27521
MAPPING PROMS |
ouTPUT REGISTER/ STACK
COUNTER POINTER
12'/
¥ .
\_ pSUBROUTINE PpP on
m— ND LOOP STACK
. ( FAIL RASS
ot B %QE PAss MICROPROGRAM
SIN meef § =S K COUNTER REGISTER
— -0
INR o] 4 EH &
EE
ETC 3 3 bR 2 PQ .
T ] 2 NexT Achilss
: . MULTIPLEXER INCREMENTER
N OUTPUT
v ]
T L ]
cc
TEST =—
E ce
4, =M controL
L4
12y
ADORESS ‘
'MICROPROGRAM MEMORY
An27527
z PIPELINE REGISTER
1
BRANCH NEXT
-~q ADDRESS ADDRESS SELECT OTHER
12y V¢

Am2901 OR
Am2903

ADVANCED MICRO DEVICES &1



1-1760 ED2900A 1-1760
10 5 S S S

CJPP Conditional Jump to Pipeline and POP TOS
(Use to exit from a loop which uses the stack)
ADDRESS LABEL 2910 COND  BRANCH
(HEX) INSTR MUX  ADDRESS
50 PUSH  FAIL #
51 CONT # #
52 CONT # #
53 CJPP  TESTJ ADRJ
54 CJPP  TESTK ADRK
55 LOOP  TESTL #
56 CONT  # #
80 ADRK: CONT # #
81 CONT # #
82 CONT  # #
90 ADRJ: CONT # #
91 CONT # #
92 CONT # #
. «{(51) sTACK
PUSH 50 96—
nar) e
cuppP :j N /1 90
CJPP 54 @——ta@ 80 91
LOOP 55 th:J i 81 % 92
CONTY 56 & FAIL ¢ 82
cc COUNTEFR = 0 STACK ADDRESS REGISTER; oF
LINE SOURCE COUNTER
‘;?\?LS X P&P ch NC PL
Figure 4-23. Conditional jump pipeline and POP (CJPP. B).

ADVANCED MICRO DEVICES &1



1-1770

CARRY
OVR
ZERD
SIGN
INTR
ETC
ETC

ED2900A

CJPP

DATA BUS

<

INSTRUCTION REGISTER

OP CODE | OTHER

? |
— |

1-1770

e L

ADDRESS
Am2910
3-Am27521 0F ——‘
MAPPING PROMS - J™1
OUTPUT REGISTER/ STACK
COUNTER POINTER
12
— n SUBROUTINE
ND LOOP STACK
: PAs|s
8
7 12
¢ Mo FAIL
DD-IE
p ‘-’.’35 MICROPROGRAM
g2 COUNTER REGISTER
[l
! §gs
3 53 <
z +
1 mcnzninm_
y [
o .
TES -
ot cm— . cc
CONTROL
I 12K
: L W
-y e
AGBRESS
WMICROPROGRAM MEMORY
An27527
£ PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
lt 12 J ¥
o

et 1]

Am2901 OR
An2903

ADVANCED MICRO DEVICES &1



1-1780 ED2900A 1-1780
0 4 S O

TNB  Three-Way Branch (Dead-Man Time-Out)

ADDRESS LABEL 2910 COND  BRANCH

(HEX) [NSTR  MUX ADDRESS
62 CONT # #

63 PUSH  PASS  VAL-1
64 BEGIN: CONT # #

65 TWB TESTM ADRM

66 CONT # #

72 ADRM:  CONT #
73 CONT #

I A

~ T TTTS\CONT 62 sTACK

PUSH MUST IMMEDIATELY PUSH 63

PRECEDE THE FIRST CONT 64 \®REG'STE"
STATEMENT IN THE LOOP TWE 65 COUNTER
~__ 72 CONT
" CONT&6 f 73 CONT
cc CCUNTER = 0 STACK ADDRESS REGISTER oE
LINE SOURCE COUNTER
=0 NC
PASS 20 poP «PC DECHEMENT
PL
FAIL =0 POP D NC
#0 NC STACK DECREMENT

Figure 4-24. Three-way branch (TWB. F).

ADVANCED MICRO DEVICES 1



1-1790 ED2900A 1-1790
< DATA BUS >
INSTRUCTION REGISTER
oP CODE | oTHER or DECR o
8 T | PAsSsS AND
[ 7 - ENTR £ ¢
; _";"2“7555:1 o DECR o An2910
MAPPING PROMS [ FAIL AND
OuTPUT REGISTER/ ENTR * ¢ STACK
COUNTER POINTER
Ry ParP onN
FAIL AND ¥ PRASS
ENTR * & or
) SUBROUTINE Eh D
= ~ AND LOOP STACK I AN
CARRY owmmmed. g ° p C,’bra=¢
OVR et 7 CNAR = ¢
R0 —] ¢ Sz d MaTcH
guk (PAss
- =S MICROPROGRAM
—t 5 §§§ COUNTER REGISTER
INTR o] 4 S —1
|3 (P 1 §§§ . P
F o
ETC ] 2 NT ADREAS
. M \ LpAER INCREMENTER
P ¢ 4 i ’
TES -
. cc
4,, + CONTROL
J a4
ADDRESS
'MICROPROGRAM MEMORY
Am27527
z PIPELINE REGISTER
1 BRANCH NEXT
< ADDRESS ADDRESS SELECT OTHER
12 Y b g
— e
Am2901 OR

An2903

ADVANCED MICRO DEVICES 1



1-1800 ED2900A 1-1800
st S

POWERFUL THREE-WAY BRANCHING

62 ¢
63 ¢ REGISTER |gSTACK,
PUSH 64 1 |
65 COUNTER
THB  66( 72
67 ¢ . 73
v 74
IF
_ CONDITION
y/nz; FAIL
IF IF
COUNTER = O COUNTER = 0
YES \ YES/\
CONTINUE CONTINUE GO TO BRANCH GO TO BRANCH
POP STACK POP STACK ( PIPELINE ) ( STACK REFERENCE )
DECR COUNTER POP STACK DECR COUNTER

ADVANCED MICRO DEVICES &1



1-1810 ED2900A 1-1810

EXAMPLE OF THREE-WAY BRANCH

@ PUSH START ADDRESS
OF ROUTINE ON STACK

‘ LOAD LENGTH OF MEMORY
PUSH 63 @ TO BE SEARCHED
CONT 64 7<
(FETCH NEXT
OPERAND;
CONT 65 ¢ Eg&‘_"g‘.rf)m
‘ 1 l COUNTER # 0; DECREMENT
CONT 66 $
COUNTER = 0
NO MATCH ——= —_—
TWB 67 T,L -—— 78 CONT
NO MATCH
‘ WITHIN MEMORY
SECTION
CONT 68 79 CONT

MATCH FOUND

ADVANCED MICRO DEVICES



1-1820

ED2900A 1-1820

Special Pins on Am2910

RLD Register Load

For the basic instruction set, RLD is held high

For causing the register to load on the 4 clock
transition, regardiess of the instruction, RLD is
pulled low -- whatever is on the bus is loaded
into the register

Cin Carry In

For normal operation, Cyy is held high

To repeat an instruction, CIN is driven Tow
(not normally under pipeline control or you
may have an infinite loop!)

ADVANCED MICRO DEVICES 1



1-1830 ED2900A 1-1830

Special Pins on Am2910

CCEN Condition Code Enable

e CCEN = LOW; enables CC (TEST) input to
operate normally

e CCEN = HIGH; all conditional instructions
are unconditionally true (TEST = PASS)

OE Tri-state control of Y outputs

FULL Five items are on stack; use in diagnostic
test programs; debug

ADVANCED MICRO DEVICES <1



1-1840 ED2900A 1-1840

ADVANCED MICRO DEVICES &1



1-1850 ED2900A 1-1850

NEXT ADDRESS CONTROL

Am29811

MICROPROGRAMMED SEQUENCERS

Am2909 / Am2911

ADVANCED MICRO DEVICES <1



1-1860

ED2900A

Am2909/2911

|

INSTRUCTION REGISTER

f

1-1860

MEMORY
MAP
OE
D, ] | &
{REGISTER| -
TC cLoCK S
COUNTER |
|cLock
| et
: .
Am29811A . :
' ‘] iuPC REGISTER: - - fetmem
’ POLARITY . Loaic| G — ‘ e
—_— ... |INCREMENTER ;
—=1 CONDITIONAL S T Cout
1 Mux A . .
—_—]
e o4 Yl
—] MICROPROGRAM
MEMORY
NEXT BRANCH
A00RESS | POLARITY | conpiTion| 2RANCH. | oTHeER
SELECT SELECT

!

|

l

!

i

OE

PIPELINE REGISTER

I CLOCK

-

|

CONTROL
SIGNALS

ADVANCED MICRO DEVICES {1



1-1870 £D2900A 1-1870

Using the Am29811A with the Am2909A/Am2911A

® Bit-slice architecture means more microword addresses due to
more address Tines, hence larger microprograms. (Sequencer
width independent of ALU width.)

o ORed outputs on Am2909A allows use of Am29803A for 16-way
branch.

° Separate register (Ri) and direct (Di) inputs on Am2909A for
flexibility.

° Am2909A and Am2911A speeds are comparable to Am2910.
(See Data Book)

® Could replace Am29811A with ROM for customer instruction set.

ADVANCED MICRO DEVICES <1



1-1880

ED2900A

Am29811

1-1880

0 JUMP ZERO (J2)

0‘\‘~

2

1 COND JSB Pt (2JS)

STACK
L1
52
53

55

33!l®.

2 JUMP MAP [JMAP)

50

L1]

52

2] 90
L

3 COND JUMP PL (CJP)

50
54
$2
3
54

4 PUSH/COND LD CNTR (PUSHI

STACK

L1
52
L)

PEGISTER/
COUNTER

\

$ COND JSB R/PL (JSRP)

6 COND JUMP VECTOR (CaV)

S0
51
52
53 20
54 kAl

7 COND JUMP R/PL (JRP)

S0
(1]
2
83

STACK
5?
53
20 80
[} L1
fod ™)
2 87
2 13
™ [ ]

8 REPEAT LOOP,CNTR 4 0 (RFCT)

S1ACK
IPUSHI
bl ALGISTER/
Ly COUNTER
52
53
sa

9 REPEAT PL,CNTR » 0 (RPCT)

COUNTER
nocm

51
52
$3

B

10 COND RETURN (CRTN)

11 COND JUMP PL & POP (CJIPP)

>’/’@51“1#{

w 1PUSHI

51 D--l

52 ¢ 70
53 0 ¢ N
54 $ 30 9 72
¢ im tn

6 ¢ 82

12 LDCNTR & CONTINUE (LOCT)

COUNRTER

50
L1}
52
3

I

STack
50
51 90
52 L1]
53 82
54 9
55 a4
"%
L)
97

13 TEST END LOOP (LOOP}

14 CONTINUE (CONT)

L4
53

15 TumpP epsuns (IP)

In
n
2

50 S1ACK
u3 1USHE
87
83
“s
"
Tohy
W

ADVANCED MICRO DEVICES {1




1-1890

ED2900A 1-1890

SUMMARY OF
NEXT ADDRESS CONTROL
LOGIC BLOCK

{223 Mux SELECT

NEXT ADDR SELECT
p——2m FE - FILE ENABLE

/44 > (STACK)

COND MUX OUTPUT —3» PUP - PYSH/POP

ine
3 COUNTER LOAD

Am29811A :
———3» COUNTER ENABLE

PLE - PIPELINE ENABLE

o !
VAP E
MAP ENABLE

v

i ZE—VECT
1 0F 4
-3 OF,
VAPE LT OBwap  OEp  DEyeer DECODER PL
3 EEMAP
L L H H H Am25L82539 — N.C.
L H L H
H L H L H
H H H H L

ADVANCED MICRO DEVICES <1



1-1900

ED2900A

Microprogram Sequencer Block Diagram

PUSH/POP

FILE ENABLE

4
RecisTer |
ENABLE
. ADDRESS REG/ STACK
RE >——‘§‘—" HOLDING REG POINTER
D AND R }
» CONNECTED
ON Am2211
: ONLY P eX 4FILE
DIRECT ‘—'°< -
mrurs -l T ‘ cLOCK
7 l ‘ Ve
AR 3 uPC
50 >———n " RO
{CROPROGRAM
MULTIPLEXER
s, _ COUNTER REGISTER
X X X X
m2909 ONLY 0 ! 2 2
OR: ~—
‘om| I
R
/V 4
ZERO
h — . $ -
INCREMENTER |
oUTPUT
CONTHODL 7
Ot >—o>
Y, C, Chea

1-1900

ADVANCED MICRO DEVICES ¢l



1-1910

2911
4 bit

shared
Rﬁ Di

none
RE = LOW
loads reg

LERO = LOW
Y.‘-_-G

OE
needs Am29811
JP

OEp,

OEmap

20pin DIP

ED2900A

2909
4 bit

separate

Ry Dy

OR; input
for 29803

RE = LOW
loads reg

ZERO = LOW
Y1 = Q

OE
needs Amz29811
JP

OEp.

OEmap

28pin DIP

2910
12 bit

shared
none

RLD = LOW
loads reg

none

OE

self contained

TWB

Epp
OEpp
OEyect

40pin DIP

1-1910

29112
8 bit

separate

16-way branch

N/A

CZ1o0

HOLD

self contained

TWB+

MINTA

48pin DIP

ADVANCED MICRO DEVICES o\



1-1920 ED2900A 1-1920

Am29803A

® There is another statement that can be used in structured
code

THE CASE STATEMENT

) An N-way conditional branch

o Used for choosing 1 of n paths based on one or more test
results.

9 For the Am29803A, 1 of 16 branches can be selected.

ADVANCED MICRO DEVICES &t



1-1930 ED2900A 1-1930

16-Way Branch
(T39 Tz, Tls TO)

ADVANCED MICRO DEVICES 1



1-1940 ED2900A 1-1940

Advantages of the Am29803A

® Allows any combination of up to four tests
(16-way branch) to be decoded in two
microcycles.

® faster than a series of conditional jumps

and tests written in microcode.

o tasier for microprogramming.

ADVANCED MICRO DEVICES <1



1-1950

ED2900A

1-1950

FUNCTION TABLE

Am29803A

o
P IIFEI T IE NE JINT T JNT 2 L ST 3 BT JRT JNE. SN J JE J PEL. L J PEE. JET. 4 Qb S S . F P S PR SR RS JED. ) S JET. P J D I SN JUE JH- JEE D ST 4
=}
- .
3 DT Y] PR SEET. T I BV BNE X J BT & J PENT 3 JUIEE. & J GUPN] PETEE. & JPNN | 3 4 PP 3> S0 PR | - J PR PN D 3 PPN 5 JE R S o PEPS L 3 S P > ) QPR . JUPNE 3 JEPRY - JEPEP -4
=]
~N
ool ol DI | A a3 AT I T T | A | Pt d A d DA d A I I I Al DI I I T DL d I T I I T i oS JI T T TS d AT II
o
™ .
K| gludjsfjadddsl dd|ddaadluddddidoddddddiddiddddi Sddd e dd e dddd]|dddddDdd D | Dt d D D) | S LA I JTITIIXIIIII
=}
TO XXX | T T XX AT T | X XXX I T AT T I XX | ST T XXX X AT 3T AT AT X XXX | JT T T T [ XXX XX XXX | JT AT T 2T AT ST ST 0
XXX a0 T T XXX XXX ST ST ST TSI T T XX XX XX JT T AT T AT T X XXX XXX XXX XX | T I T AT T b I T AT T2 I T =T
PV x XXX X XXX T | AT T It T Tt A DT T T XX XXX XX XXX XXX XXX XX | S TS T | ST Z T T T T ST T |4 T I T TSI I
e | 3 x X XXX XXX XXX XX XX XXX XXX XX ST T T T T ST I T T ST T T TI T T | S S S T I T T |l ST T I I I
Olajxz | = T - k4 - T - T - I - T - T
ok IS R ) x I -5 - I X - - I T -t pu] T T
Nl o 2 - x I I T - -~ - = T T b4 T
-
Bcl R N ] ~ - - =] - I T I = I T T x
. =
[
o~ ™ Ll ™ .3
M - . L - [od o~
W - ~ ~ < ) © L © L ] -
] - - - - - - - Ll ~ o~ -
3 2 3 & = <2 < it b - it -
- - o~ = = ™ (-] - (=] o~ o - 3
22| < A - - ~ - - I - - - s e °
[ - - - - - - - - - - - -
ol 81 E| ¥ | B3] B H g T F Z g 3 g g z
2| - - - - - [ Ll = - [ - - - - -

L=LOW, H=HIGH, X = Don't care

ADVANCED MICRO DEVICES Q1




1-1960

ED2900A

1-1960

L
A Typical CCU using the Am2909, Am2911, Am29803A and Am29811A
DATA BUS
INSTRUCTION REGISTER
OP CODE I OTHER
0, ADDRESS Am2911 MICROPROGRAM SEQUENCERS
1 STARTING FE. PuP
—TC  COUNTER ADDRESS  OF p=-— STACK POINTER
DECODER
LOAD/COUNT (MAPPING PROM) _"‘“—"'_'
OUTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
) R FPC
So NEXT ADDRESS
s MULTIPLEXER INCREMENTER
OuTPUT
A //2 //2 ‘ 1
—ad B
CARRY ~—af 7 Am29811A
- NEXT
OVR ~——=-16 Sy ADDRESS ADDRESS
zeRO——ls  z& 5 POLARITY CONTROL MICROPROGRAM MEMORY
o
SIGN —=-] 4 = 5 CONTROL TEST
532 3 BRANCH NEXT ADDRESS OTHER
INRPT ——emf 3 g 3 ADDRESS SELECT
(5]
ETC == 2 ‘ ] l
1 [
I OF PIPELINE REGISTER
= , L
11 4 J l
T0 Am2801
13
OTHER

ADVANCED MICRO DEVICES <1




1-1970 £ED2900A 1-1970
e

EXAMPLE

) Show the microcode (partial width only) to program these
statements, assuming an Am2903-Am2909/11-Am29811 CCU.
IF A THEN ON (T2T0) GO TO (10, 200, 30, 40)*

ELSE ON (T3T1) GO TO (20, 200, 10, 20)
IF B THEN ON (73T2T1) GO TO (10, 20, 30, 40,..)
ELSE ON (T2T1T0) GO TO (100, 200, 300,...)
Where:
A and B are condition multiplexer input lines.
T3, T2, T11, T0 are test inputs to the Am29803.
10, 20, 200, etc. are labels of statements.
The same label means the same statement.
The statements may be considered to be the beginning of
a microroutine of unknown length.
* IF A IS TRUE, THEN
IF (T27@ = ¢@) GO TO 10
IF (T2T¢ = 91) GO TO 200
IF (7279 = 1¢) GO TO 30

IF (T2T@ = 11) GO TO 40

ADVANCED MICRO DEVICES 1



1-1980

ED2900A
1

Am29803 SOLUTION

o - —— o G —_—— —— - — -

Gt Cande e
+ -+

N

350
351
352
353

360
361
362
363

370
371

29811 MuX
INSTR SEL
CJpP A
Jp #
JP #
CJpP B
JP #
JP #
JP #
JP #
JP #
JP #
JP #
JP #
JP #
JpP #
JP #
JP #

BR ADDR 29803
INSTR
i+2  NO TEST
3/0* Ty
360 T, Ty
j+2  NO TEST
370 T,TqTg
380 3757,
20 NO TEST
200 NO TEST
10 NO TEST
20 NO TEST
10 NO TEST
200 NO TEST
30 NO TEST
40 NO TEST
100 NO TEST
200 NO TEST

*

1-1980

address must have
@ as final HEX

digit if LSS 2909
attached to 29803

ADVANCED MICRO DEVICES (1



1-1990 ED2900A 1-1990

Am29112

MICROPROGRAM SEQUENCER

ADVANCED MICRO DEVICES 1



1-2000 ED2900A 1-2000
e 0 S Y

Am29112 in a Single Pipelined System

EMERGENCY FIFO
DETECT
CIRCUIT
D
g
21 INT REQ
5 VECTORED Am29112 conomon | |
21 | erioamry INT ACK INTERRUPTIBLE ] ©C CODE '
& | | INTERRUPT MICROPROGRAM MUX
E| [cONTROLLER{ SEQUENCER l
z | e
=1
OE Y
VECTOR
MAP
PROM
MICROPROGRAM
PIPELINE REGISTER

ADVANCED MICRO DEVICES ¢t



1-2010 ED2900A 1-2010

Am29112 CHARACTERISTICS

Functional Description

° The Am29112 is a high performance interruptible microprogram
controller intended for use in very high speed microprogrammed
machines and optimized for the new state-of-the-art ALU's and
other processing components.

® It has an instruction set featuring relative and multiway
branching, a rich variety of looping constructs, and
provision for loading and unloading the on-chip stack.

o Interrupts are accepted at the microcycle level and serviced
in a manner completely transparent to the interrupted
microcode.

ADVANCED MICRO DEVICES {1



1-2020

ED2900A 1-2020

DISTINCTIVE CHARACTERISTICS:

The Am29112 is designed to operate in 10 MHz microprogrammed
systems.

A single Am29112 is 8 bits wide and addresses up to 256 words
of microprogram memory. Two Am29112's may be cascaded to
directly address up to 64K of microprogram memory.

A 33 register deep on-chip stack is used for subroutine
l1inkage, interrupt handling and loop control.

Two kinds of interrupts: maskable and unmaskable.

Features an 8-bit counter for loop control. When two
Am29112s are cascaded, the counters can act as a single
16-bit counter or two independent 8-bit counters.

Features direct, muitiway, multiway relative and program
counter relative addressing.

Support for writable control store.

Hold feature - a hold pin facilitates multiple sequencer
implementations.

ADVANCED MICRC DEVICES <1



1-2030 ED2900A 1-2030

Am29112 OVERVIEMW:

® The Am29112 is designed for use in single-level pipelined
systems. A typical configuration is shown on the next page.

] Branch addresses, constants for the various registers and
stack pointer values are supplied to the Am29112 through
the D port which is bidirectional to allow the stack to be
unloaded onto an external LIFO.

® The next address generated by the sequencer is output on
the Y port and directly drives the micromemory program.

e A single register at the output of the microprogram memory
contains the microinstruction being executed, while the
next is being fetched.

® External conditions are applied to the CC input of the
Am29112 via the condition code MUX and also to the multiway
inputs.

ADVANCED MICRO DEVICES <1



1-2040

ED2900A

Amz29112 Configuration

Dg-Dy

&

1-2040

STKERR

<z

COMMAND

UINTR

WINTR

INTD

MiNTA

INTERRUPT
LOGIC

naus

—

wrvect <

-

!

COuNTER <

—

|

owiDTH <

g

8TACK

3x8

i

STACK MUX

|

F BUS

A MUX

/

ADDER

C MUX

= D

, S INSTRUCTION

, MOCE

INSTRUCTION

 —1

INTRTN

]
HOLD Yo-Yr

ADVANCED MICRO DEVICES



1-2050

ED2900A 1-2050

Am29112 OVERVIEW (cont'd):

A vectored, priority-interrupt controller generates a
prioritized interrupt request (MINTR) to the Am29112,
which acknowledges the request via the MINTA pin. Upon
receiving the acknowledge, the priority-interrupt control
puts out the encoded vector from the mapping PROM. The
MINTA output of the Am29112 turns on the PROM output and
simultaneously turns off the Y port, enabling the interrupt
vector onto the microprogram address bus. In the Am29112,
internal states are automatically saved on the stack while
the interrupt vector is transmitted through the Y port and
incremented to form the next microprogram address.

The emergency detect circuit generates an unmaskable
interrupt request upon power failure or stack error. On
receiving an unmaskable interrupt, the sequencer branches
to the unmaskable interrupt routine; the address of this
routine is stored on the Am29112 in the INTVECT register.

The internal organization of the Am29112 is shown in the
figure. The most important control loop inside the
sequencer consists of the CMUX, incrementer, and PC register.

ADVANCED MICRO DEVICES 1



1-2060 ED2900A 1-2060

Am29112 OVERVIEW (cont'd)

o The CMUX selects the next microprogram address based on the
instruction and condition code inputs. The next microprogram
address is selected from: the PC register for a continue, the
D port for a branch, the adder for relative and multiway
branches, the interrupt register for unmaskable interrupts,
the stack for subroutine returns or loop repeats, or aill
zeros for the JUMP ZERO instruction.

ADVANCED MICRO DEVICES <1



1-2070 ED2900A 1-2070

Am29112 INSTRUCTION SET

MODE BITS

° The Am29112 is controlled by five instruction inputs, two
mode inputs, and the condition code. In typical applications
it is expected that the instruction inputs are driven directly
from the pipeline, whereas the mode inputs are either perman-
ently wired high or low to select the desired operating mode,
or driven indirectly via external logic. (In some applications
it might be justifiable to drive the mode bits directly from the
pipeline.) The two mode bits select among three operating modes:
normal (@,@), extended (#1) and forced continue (18 and 11).
In the normal mode the entire instruction set of the Am29112

applies.
MODE CONTROLS

Igs Mode Description

79 Normal For cascaded Am29112s, two independent
8-bit counters

an Extended For cascaded Am29112s, one 16-bit counter

19 Forced The Am29112 executes a continue
instruction regardless of instruction,

11 Continue condition code, and multiway inputs.

ADVANCED MICRO DEVICES C1



1-2080 ED2300A 1-2080

Extended Mode:

° The instruction set includes the instructions that differen-
tiate between upper and lower counters (when there are two
cascaded Am29112s). In the normal mode, the two counters on
cascaded Am29112s function independently.

® In the extended mode, however, the counters on cascaded
Am29112s behave 1ike one 16-bit counter and instructions
that differentiate between counters degenerate into identical
instructions.

(] The instructions of the Am29112 are classified into four
groups:

1

branching and subroutine linkage

3

looping

- stack and register

interrupt

® The sequencer has a repertoire of 40 different instructions
In order to encode these instructions with only five
instruction lines, the condition code is used in some
cases to differentiate between two distinct instructions
sharing the same opcode.

ADVANCED MICRO DEVICES &1



1-2090 ED2900A 1-2090
L .

An29112 INSTRUCTION SET

Opcode (I40) Condition Mnemonic Description
0 X JZ.U UNCONDITIONAL JUMP ZERO
1 PASS PUSHD.P PUSH D (PASS)
1 FAIL LDCMD.F LOAD COMMAND REGISTER FROM D (FAIL)
2 COND POP.C POP; CONDITIONAL STACKOUT TO D
3 COND cJD.C CONDITIONAL JUMP D
4 COND CJsD.C CONDITIONAL JUMP SUBROUTINE D
S COND CiMw.C CONDITIONAL JUMP MULTIWAY D
6 COND CJSMW.C CONDITIONAL JUMP SUBROUTINE MULTIWAY D
7 COND CRTN.C CONDITIONAL RETURN
8 COND PUSHPL.C PUSH PC: COND LOAD LOWER COUNTER
9 COND LDLC.C LOAD LOWER COUNTER: COND PUSH COUNTER
10 PASS POPLC.P POP TO LOWER COUNTER (PASS)
1 PASS RSTSP.P RESET STACK POINTER (PASS)
11 FAIL LDINTV.F LOAD UNMASKABLE INTERRUPT VECTOR (FAIL)
12* PASS RFCTU.P REPEAT LOOP, UPPER COUNTER = 0 (PASS)
12° FAIL "RFCTL.F REPEAT LOOP, LOWER COUNTER = 0 (FAIL)
13 PASS RPCTU.P REPEAT PIPELINE, UPPER COUNTER = 0 (PASS)
13 FAIL RPCTL.F REPEAT PIPELINE, LOWER COUNTER = 0 (FAIL)
14 COND LOOP.C TEST END LOOP
15 PASS ENINT.P ENABLE INTERRUPTS (PASS)
15 FAIL DISINT.F DISABLE INTERRUPTS (FAIL)
16*** COND TWBL.C THREE-WAY BRANCH, LOWER COUNTER
174~ COND TWBU.C THREE-WAY BRANCH, UPPER COUNTER
18 PASS TSTSP.P TEST SP WITH D (PASS)
18 FAIL TSTMT.F JUMP D IF STACK NOT EMPTY
19 COND CJDF.C COND JUMP D/STACK AND POP
20 COND CJSDF.C COND JUMP SUBROUTINE D/STACK AND POP
21 COND CJMWR.C COND JUMP MULTIWAY RELATIVE D
22 COND CJSMWR.C COND JUMP SUBROUTINE MULTIWAY RELATIVE D
23 COND CJPP.C COND JUMP PIPELINE AND POP
24 COND PUSHPU.C PUSH PC: COND LOAD UPPER COUNTER
25 COND Lpuc.Cc LOAD UPPER COUNTER; COND PUSH COUNTER
26 PASS POPUC.P POP TO UPPER COUNTER (PASS)
26 FAIL POPDW.F POP TO DISPLACEMENT WIDTH (FAIL)
27 COND LDDbw.C LOAD DISPLACEMENT WIDTH; COND PUSH DW
28 COND CJR.C COND JUMP D PC REL
29 COND CJRN.C COND JUMP D PC REL NEGATIVE
30 COND CJSR.C COND JUMP SUBROUTINE D PC REL
31 COND CJSRN.C COND JUMP SUBROUTINE D PC REL NEGATIVE

*These instructions are identical in the extended mode.

**These 100.
***These too.

Extensions: U — unconditional; C — conditional; P — PASS condition; F — FAIL condition.
Note: PASS/FAIL condition can be produced as foliows. P stands for polarity and | for input.

cc | cceN| PoL | Condition
X | 1 0 PASS
X | 1 FAIL
1] o P COND

ADVANCED MICRO DEVICES




1-2100

ED2900A

1-2100

0 Jump Zero (JZ.U)

00 SA
o 8
02 1
o 50
UNCONDITIONAL

1 Push D (PUSHD.P)

30
1)
£2
STACK
L]
5
FORCED PASS

1 Load Command Latch

from D (LDCMD.F)
.
o
7
COMMAND LATCH
n
7
FORCED FAK

2 Pop and Unconditional Stackout
to D (POP.C)

32
() @
34 D PORT
s Pass
FAL
CONDITIONAL.

3 Jump D (CJD. C)

4 Jump Subroutine D (CJSD.C)

-
-

CE B B -

5§ Jump Multiway D (CIMW.C)

A @ R2
A <]
AS B4
AS ¢ 8s
FAIL PASS

CONDATIONAL

6 Jump Subroutine Multiway
D (CJSMW.C) .

By ¢
BA ¢ STACK
on(9 O=88 M=2 PASS
BC 82 '
5D ¢ B3

BE ¢ B4

BF ¢ 1]

FARL

CONDITIONAL

7 Return (CRTN.C)

P 10 STACK

s "
2 b 12
z b 13
=n POP L1
2 I ]
24
28

FAlL PAsS

CONDITIONAL

8 Push PC and Conditional Load
l.ower Counter (PUSHPL.C)

s |
"C STACK
(UNCONDITIONAL)

7 9
2
) LOWER COUNTER
2 PASS

FAIL

CONDIMIONAL

9 Load Lower Counter and
Conditional Push Counter (LDLC. C)

¥
»
LOWER COUNTER
38 (4 (UNCONDITIONAL)
A
n
3 STACK
Pass
Fan
CONDITIONAL

10 Pop to Lower Counter
(POPLC.P)

4D

. (o)

hd LOWER COUNTER
FORCED PASS

ADVANCED MICRO DEVICES {1




1-2110

ED2900A

1-2110

11 Reset Stack Pointer (RSTSP.P)

A @
B ¢

* D—0@

1] STACK POINTER

FORCED PASS

11 Load Unmaskable Interrupt
Vector (LDINTV.F)

2 ¢
20 9

=®—0

F ¢ INTVECT
REGISTER
30
FORCED FALL

12 Repeat Loop, Upper Counter
(RFCTU.P)

22
a3

2% UPPER COUNTER

»

28

FORCED PASS

12 Repeat Loop, Lower Counter
(RFCTL.P)
(40

4A STACK
» ) o
4c LOWER COUNTER
4D
aE
4F ()
50 poP
L]
FORCED FAL

13 Repeat Pipeline, Upper

Counter (RPCTL.P)
1"
”
- UPPER COUNTER
" D=19
20 ¢ POP
2 .
2
FORCED PASS

13 Repeat Pipeline, Lower
Counter (RPCTL.F)

1%

”

" LOWER COUNTER
19 D=1y

20 POP

a

2

FORCED FAILL

14 Test End Loop (LOOP.C)

28 %

- S

FARL

CONDIMIONAL

15 Enabie interrupts (ENINT.P)

12

n

"

Ty ENABLE
MASKABLE
INTERRUPTS

FORCED PASS

15 Disable Interrupts (DISINT.F)

]

n

"

1 DISABLE
MASKABLE
INTERRUPTS

FORCED FAIL

16 Three-Wsy Branch, Lower
Counter (TWBL..C)

“ L//S%
a7

D)+1
o+2
©y+3

CONDITIONAL

17 Three-Way Branch, Upper

Counter (TWBU.C)

489 STAEK

a

a

“

sa(e FAIL

c (L]

48 @ Pass
D)+ 1

a9
{©)+2
0)+3

CONDITIONAL

18 Test SP with D (TSTSP.P)

cs ¢ }) a7 TESTSPWITHD
$a
)
NOT «“
ENOUGH ENOUGH
SPACE SPACE
FORCED PASS

ADVANCED MICRO DEVICES o




1-2120

ED2900A

1-2120

18 Jump D Iif Stack Not Empty

(TSTMT.F) B
s e
@ e
uG
oY (L]
3] (D) +1
“m e ©+2
STACK STACK

EMPTY WNOT EMPTY
FORCED FAL

19 Conditional Jump D/Stack
and Pop (CJOF.C)

BTK) + ¢
STK)+ 2
(ST + 2

(STACK) ()

20 Conditional Jump Subroutine
D/Stack and Pop (CJSDF.C)

(70) sTACK

POP STACK
PUSH 68

IF PASS
T0 ©
” ©+1
b, ] {5TK) + 2 ©+2
n
FARL PASS
(STACK) (/]

21 Conditionat Jump Muitiway

Relative D (CJMWR.C)
A @
A D=8s
“C LS §
A3 { s
Y »
FARL PASS
CONDITIONAL

22 Conditional Jump Subroutine
Multiway Relative D (CJSMWR.C)

Ad
STACK
A
D=3
A2 Ma=3
A3 [N
M [ 1]
FARL PASS
CONDITIONAL

23 Conditional Jump Pipeline
and Pop (CJPP)
STACK

- X '
POP STACK

—®
:‘L / ¥ PASS

Nod

[ r 1))
] D+
+2
FARL PASS
CONDIMORAL

24 Push PC and Conditional Load

Upper Counter (PUSHPU.C)
” (=)
STACK

(4 UNCONDITIONAL
v
» ¢ O

UPPER COUNTER
» ¢ PASS
2 ¢

CONDITIONAL

25 Load Upper Counter and
Conditional Push Counter
(Louc.C)

14
»
ng
3A ¢
i

& 8

CONDITIONAL

26 Pop to Upper Counter (POPUC.P)

4A ¢
LN ¢
(3
o¢
ae ¢ UPPER COUNTER

9

FORCED PASS -

26 Pop to Displacement Width
(POPDW.F)

74 DWIDT! REG

FORCED FARL

27 Load Displacement Width and
Conditional Push DW (LDDW.C)

CONDIMIONAL

28 Conditional Jump D PC Relstive

(CJR.C)
4A ¢
D.l - ‘
4B
‘cg JUMP ADDRESS 1S
(PC) + D*°
4 ¢
PASS
FAIL 4E ¢
aF ¢

D** is displacement (see 1),
CONDITIONAL

ADVANCED MICRO DEVICES ]




1-2130 ED2900A 1-2130

29 Conditional Jump D PC Relative 30 Conditional Jump Subroutine 31 Conditional Jump Subroutine
Negative’'(CJRN.C) D PC Relative (CJSR.C) D PC Relative Negative (CJSRN.C)
M o 2 4A 1)
4A 48(9) A STACK
PASS PASS
48 4c a(@f— pe- . 2
4 JUMP ADDRESS IS 40 JUMP ADDRESS 1S s JUMP ADDRESS IS
PP (PC) + D** 4E (PC) + D** 4D (PC) + D**
FAIL FAL
D** = -2, should be twa's complement (see 2). D** is disptacement (see 1). D** = -2, should be two's complement (see 2).
CONDITIONAL CONDITIONAL CONDITIONAL

Notes: 1. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are zero-extended.
2. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are one-extended.

ADVANCED MICRO DEVICES 1




1-2140 ED2900A 1-2140

ADVANCED MICRO DEVICES



1-2150 ED2900A 1-2150

HOMEWORK - Am2910

e Turn to your Am2900A Exercise and Laboratory Manual.

Find the exercises for the Am2910 and perform exercises 1 through
18 inclusive.

) For homework, do the famous Coffee Machine problem in ED2900
Exercise and Laboratory Manual.

DESIGN EXAMPLE:

° Solve the advanced traffic light problem using Boolean logic
and the state diagram design approach. See ED2900 Exercise
and Laboratory Manual.

EVALUATION BOARD EXCERCISE

® Read Am29203 Evaluation Board description in ED2900A
Exercise and Laboratory manual.

(] Perform (Day 2) Am2910 sequencer laboratory experiments.

ADVANCED MICRO DEVICES &1



1-2160 ED2900A 1-2160

HOMEWORK DESIGN PROBLEM:

THE FAMOUS COFFEE MACHINE

(See ED2900A Exercise and Laboratory Manual)

ADVANCED MICRO DEVICES 1



1-2170 ED2900A 1-2170

MICROCYCLE TIMING - Am2910

ADVANCED MICRO DEVICES O



1-2180 ED2900A 1-2180

CCU MICROCYCLE TIMING

] The objective is to determine the minimum clock period
possible for a given design yielding maximum execution speed.

® - Each system design is different, requiring detailed analysis.

) Always use maximum (guaranteed, worst-case) detay times and
set-up times from the data sheet for the specific system
component,

° The basic technique is straightforward:

find all possible paths from one register to another

calculate the path delay time using worst-case device times

the longest path determines the minimum clock period

if necessary, look for design changes to reduce the
the time delay on the longest path

1

alternately, use a variable-length clock to
accommodate the longer delays when needed

[ The timing analysis approach is learned by considering
examples for the CCU using the Am2910. In addition, a
similar analysis would be performed for the ALU and other
system circuits and devices.

ADVANCED MICRO DEVICES {1



1-2190 ED2900A 1-2190

MICROCYCLE TIMING (CONT'D):

] Use the AMD Data Book for all Am2900 parts.

] Data for the non-Am2900 parts is assumed.
(For a real design, use the data sheets!)

° For the IR, status register, and pipeline register
assume Schottky technology. Also shown are delays
for the mapping PROM and the microprogram PROM.

DEVICE MIN TYP MAX

Schottky Register

clock-to-output 9 15
OE-to-output 13 20
data-set-up-time 5 2

Mapping PROM

address-to-output 25 45
OE-to-output 15 20

Microprogram PROM

address-to-output 30 50
OE-to-output 18 25

ADVANCED MICRO DEVICES &1



1-2200

ED2900A 1-2200

L]

MICROCYCLE TIMING (CONT'D):

The architecture to be used in these examples is the typical
computer CCU.

Although the ALU is not shown, a simflar timing analysis must
be conducted for its paths for a complete design.

Note that the Am2922 multiplexer includes a latch on its input
(I) lines that makes up part of the pipeline register. This
allows a smaller overall part count.

Observe from the Data Book for the Am2910 that different
instructions have different delay times. This means that
each involved path has to be calculated for all possible
instructions.

The potentially huge numbers of timing paths will, in practice,
be reduced by experience.

In addition to timing path diagrams, PERT charts are employed
to find the longest path.

ADVANCED MICRO DEVICES 1



L2 SIJIA3Q OWIW GIDNVAQY

cLocx

DATA BUS
D
Q
INSTRUCTION MAP l b
PEGISTER PROM
WAP
F STACK
ce Am2910 L
—_ SEQUEN
& QUE ;EE
PC
i
cp cP v
A
Am2922
STATUS CONDITION v
REGISTER CODE MICROPROGRAM
MUX TEST MEMORY
! ]
<] [+
PIPELINE PIPELINE
REGISTER REGISTER |[—
cp € oF

01¢¢-1

V006203

01ée-1



1-2220 ED2900A 1-2220
1
Am2910-1 SWITCHING CHARACTERISTICS

The tables below define the Am2910-1 switching characteristics. Tables A are setup and hold tmes retative to the clock LOW-to-HIGH
transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5V with input levels at
0 or 3V. All values are in ns. Ali outputs have maximum DC loading.

I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE
Am2910-1DC(Ta = 0to +70°C, Ve = 4.75105.25V, C = 50pF)

A. Set-up and Hold Times B. Combinational Delays

nput | te ' tp | Input ! ¥ |PL VECT. MAP: Full

D —+R 1 24 6 | Dg-D11 20 - -
Di—»PC | s8 i 4 lgri | so 51 -
lo-l3 75 | o [« | 30 - -

cc & | o TCEN 30 - -
TCEN 63 | o CP(Note2) | 78 - 60
cl 46 5 I =89 15 85 - 60
ALD i i Slfotner 1 55 - 60
OE (Note 3) |35.30 - -

C. Clock Requirements (Note 1)

Mimimum Ciock LOW Time 50 | ns
Minimum Clock HIGH Time 35 | ns

Mirimum Clock Penod, _EJ ns
=8 9 15 (Note 2) 123 1

; Boldtace imes indicate speed selected
Minimum Clock Penod. =14 93 | ns critica paths.

Il. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
Am2910-1DM (T¢ = —5510 +125°C, Vg = 4.5 10 5.5V, C_ = 50pF)

A. Set-up and Hold Times B. Combinational Delays
Input ts | th Input Y |PL VECT. MAPI Fuil |
D, >R 28 | 6 Do-D1y 25 - -
D; = PC 62 | 4 [ 54 58 -
Ig-ta 81 | o cc 35 - -
& 85 | o TTEN 37 | - -
CCEN 63 | o CP(Note2) | 77 ! - 67
c 58 | 5 1=8.8.15 |"gg - 67
A 2 | s ce -
All other | 61 67
OE (Note 3) | 40.301 -
C. Clock Requirements (Note 1)
Minimum Clock LOW Time ! 58 | ns
Mimmum Clock HIGH Time | 42 | ns
Minimumn Clock Penod, | 114!
I = 8.9 15 {Note 2) T T
Minmum Clock Period. t1=14 | 100 | ns
NOTES: change in the counter or could only cecrement the counter. Use the
1. Ciock pernods for instructions not specified are determined by external longer deiays from CP to outputs it the instruction priof to the clock was
conditions. 4 or 12 or RLD was LOW.
2. These instructions are condiional on the counter. Uce the shoner 3. Enable/Disable. Disable umes measured to 0.5V change on output
specif:ed dalay tmes if the previous instruction coutd proguce no voitage level with C = 5.0pF.

ADVANCED MICRO DEVICES <1



1-2230

ED2900A 1-2230

CONTINUE INSTRUCTION TIMING ANALYSIS

Locate "all" register-to-register timing paths.

start at pipeline, CP -> output

Am2910 I->Y, CP->Y and I->PC-setup in parallel

after Am2910 output is stable, add micromemory
address -> output delay

finally, setup for pipeline and Am2922

On PERT chart, assign worst-case times to each block.

Add up times along each path.

For PERT chart, converging paths must all be satisfied,
hence use maximum time at that point (e.g. address input
to micromemory).

Maximum path defines minimum clock cycle possible.

ADVANCED MICRO DEVICES 1



1-2240 EDZ2900A 1-2240
< DATA BUS
fo
Q
INSTRUCTION MAP Tn
REGISTER A raou o
e STACK
c» PL
Am z310
cLocx = sEouENCER
3 4,5
o~ \/‘_\®
1,2
cr o Y
) o /l
N Am2s22 v
PR STATUS CONOIMON
GISTER coot vﬂOPﬂOGR
. Re . Mux TEST / MEMORY
1,2,54, 5
S
2,5 U to o
mreLINE ] reeune
ncms'r:V' or REGISTER 7]
\—j] 1,2,3 [,_
DEVICE DEVICE PATH PATH 1 PATH 2 PATH3 ’ PATH 4 ’
PIPELINE | (P — ¥ 15 5 | 15 -- f we-
2310 I —Y 70 73 . _—— 1 ———
| 2010 T — B¢ SET - - 104 --- ---
| 2910 -y .- --- - 53 55
MEMORY ADDR ouT 50 <0 == 50 50
2922 SET-UP 11 .-- -—- 11 .-
PIPELINE SET-UP -—- 5 ——— - g
TOTAL ns 146 140 119 116 110

ADVANCED MICRO DEVICES &1




1-2250 ED2900A 1-2250

Pipeline
Register 15
Clock - Output

Am2910 Am2910 Am2910
Ii - Yil7d Ii Setup|io4 Clock - Output|ss
and Hold

65)

Microprogram
Memory 50
Addr - Output

@)

Am2922 Pipeline
Register 11 Register|s
Setup Setup

CONTINUE INSTRUCTION

PERT CHART

ADVANCED MICRO DEVICES {1



L2 SIDIAIA OWDIW AIINVAQV

JUMP MAP

DATA BUS
1o
Q
s—
INSTRUCTION \ o
REGISTER PROM
MAP
R
OE
J cp PL
cLocK AmP910
— NCER
& SEQ!
PC
 comm———— STACK
1
cP cpP
D A
—
Am2922
— STATUS CONDITION Y
. REGISTER CODE ROPROGRAM
. MUX TEST MEMORY
|
&
D D
PIPELINE PIPELINE
neslsry =~ cp REGISTER

)

——”

0922-1

V006203

092¢-1



1-2270 ED2900A 1-2270
|
|
-
}
[
[
1
Pipeline IR ! |Pipeline Am2910
Register 15 {Clock -~ OQutput| 15 | |Register Clock =~
Clock - Output ! |Clock - OQutput| [Qutput
|
r=-- J
Am2910 |
Ii - MAP|51 (
l 1|Am2910 Am2910
|Ii - PC Ii - Yi
MAP PROM MAP PROM ISETUP
OE - Output|20 ]ADDR - OQutput 45,
(86) (60) |
w (CONTINUE)

D

Microprogram

Memory 50

Addr - Output
Am2922 ' Pipeline
Register{ 11 Register
Setup Setup

JUMP MAP
PERT CHART

161

ADVANCED MICRO DEVICES {1



17 S3DIA3A OWIW AIDNVAAY

CONDITIONAL JUMP - TAKEN

DATA BUS >
|

|
Q
INSTRUCTION Q MAP T / \{
REGISTER PROM
MAP
~ R
OE
cLocK . b Amp2910 PL
— SEQUENCER N
=l
PC
( I
cp
D \\ Q A A
—ne-
—— Am2922
J— STATUS CONDITION Y
. REGISTER CODE MIGAOPROGRAM
. MUX TEST MEMORY
4
W Jrd
D b
PIPELINE PIPELINE
Reelsrsn/f— P reaiseR A=
Y { YL————-/
4

082¢-1

V006201

082¢-1



1-2290 ED2900A 1-2290
|
4
!
i
| | . I
Status Am2922 | IPipeline Am2910
Register |15 Clock - Output}32 ! |Register Clock =
Clock = : Clock - Output Output
Qutput )
| ]
Am2922 !
Di - Yi]19 :
Am2910 i Am2910 Am2910
@ I1 - pL{51 |IT1 Setup| f1i-'¥1
|and Hold
Am2910 1 i
CC - Yiju3 L (CONTINUE)
Pipeline | === w=ercmecec=e"~~—==—
Yap] Register 20
Enable -
Output
Am2910 Am2910
Di - Yi]|20 Di - PC|58
Setup
Microprogram
Memory 50
Addr - Output
Am2922 Pipeline
Register{ 11 Register|s
Setup Setup

CONDITIONAL JUMP - TAKEN

PERT CHART

ADVANCED MICRO DEVICES &1



1-2300

ED2900A 1-2300

SPEEDING UP THE MICROCYCLE

Consider a change to the architecture to speed up the
microcycle.

Use combinatorial SSI circuits to decode the pipeline
enable and map enable directly from the Am2910 instruction
inputs.

Although the SSI delay is small, it too could be eliminated
by driving the map and pipeline enables directly from the
microword.

ADVANCED MICRO DEVICES 1



12 SIJIAIG OWIW AIDNVAAY

DATA BUS
5]
Q
INSTRUCTION MAP lD
REGISTER PROM
CLOCK cP ce 2910
e SEQUENCER
[
ce cP Y
D
——e-] A 1
2922
e STATUS CONDITION Y
. REGISTER CI:)L?XE TEST MICROPROGRAM
[ ]
—_— PROM
1
D D
PIPELINE PIPELINE
REGISTER CcP REGISTER

01ee-1

V006203

01ee-1



1-2320

ED2900A 1-2320

==

1
|
Pipeline IR | | Pipeline Am2910
Register |15 Clock - Output I | Register Clock =
Clock - I | Clock - Output Output
Output |
l i
|
SSI 5 -l
!
t|Am2910 Am2910
1{Ii Setup Ii - Yi
MAP PROM MAP PROM 1land Hold
OE - Output{20 |ADDR - Output| 1 \\\\\
| (CONTINUE)
(40) (60) L I A
60) (85)
L 1
Am2910

Di - Yi|20

(80)\
"~

Microprogram
Memory 50
Addr - Output

I

Am2922 Pipeline
Register| 11 Register|5
Setup Setup

JUMP MAP -~ IMPROVED ARCHITECTURE

PERT CHART

ADVANCED MICRO DEVICES 1



1-2330 ED2900A 1-2330
!
1
||
1
l l ! |
Status Am2922 ! Pipeline Am2910
Register Clock - OQutput : Register 15]Clock =
Clock - Output 1 Clock - OQutput OQutput
!
)
Am2922 !
Di - Yi !
sSI |5 | [am2910 Am2910
' Ii Setup Ii - ¥Yi
i and Hold
22910 L \/_(coNTINUE)
cc - yi - - - -mem e oo - -
Pipeline (85)
orn Register 20
Enable -
Output
Am2910 Am2910
Di - Yij20 Di - PC
Setup
60)
Microprogram
Memory i 50
Addr - Output
Am2922 Pipeline
Register 11 Register |5
Setup Setup

JUMP TAKEN - IMPROVED ARCHITECTURE

PERT CHART

ADVANCED MICRO DEVICES o



1-2340 ED2900A 1-2340

COFFEE MACHINE SOLUTION

(See ED2900A Excercise and Laboratory Manual)

ADVANCED MICRO DEVICES &1



	001
	002
	003
	004
	005
	006
	1-0010
	1-0020
	1-0030
	1-0040
	1-0050
	1-0060
	1-0070
	1-0080
	1-0090
	1-0100
	1-0110
	1-0120
	1-0130
	1-0140
	1-0150
	1-0160
	1-0170
	1-0180
	1-0190
	1-0200
	1-0210
	1-0220
	1-0230
	1-0240
	1-0250
	1-0260
	1-0270
	1-0280
	1-0290
	1-0300
	1-0310
	1-0320
	1-0330
	1-0340
	1-0350
	1-0360
	1-0370
	1-0380
	1-0390
	1-0400
	1-0410
	1-0420
	1-0430
	1-0440
	1-0450
	1-0460
	1-0470
	1-0480
	1-0490
	1-0500
	1-0510
	1-0520
	1-0530
	1-0540
	1-0550
	1-0560
	1-0570
	1-0580
	1-0590
	1-0600
	1-0610
	1-0620
	1-0630
	1-0640
	1-0650
	1-0660
	1-0670
	1-0680
	1-0690
	1-0700
	1-0710
	1-0720
	1-0730
	1-0740
	1-0750
	1-0760
	1-0770
	1-0780
	1-0790
	1-0800
	1-0810
	1-0820
	1-0830
	1-0840
	1-0850
	1-0860
	1-0870
	1-0880
	1-0890
	1-0900
	1-0910
	1-0920
	1-0930
	1-0940
	1-0950
	1-0960
	1-0970
	1-0980
	1-0990
	1-1000
	1-1010
	1-1020
	1-1030
	1-1040
	1-1050
	1-1060
	1-1070
	1-1080
	1-1090
	1-1100
	1-1110
	1-1120
	1-1130
	1-1140
	1-1150
	1-1160
	1-1170
	1-1180
	1-1190
	1-1200
	1-1210
	1-1220
	1-1230
	1-1240
	1-1250
	1-1260
	1-1270
	1-1280
	1-1290
	1-1300
	1-1310
	1-1320
	1-1330
	1-1340
	1-1350
	1-1360
	1-1370
	1-1380
	1-1390
	1-1400
	1-1410
	1-1420
	1-1430
	1-1440
	1-1450
	1-1460
	1-1470
	1-1480
	1-1490
	1-1500
	1-1510
	1-1520
	1-1530
	1-1540
	1-1550
	1-1560
	1-1570
	1-1580
	1-1590
	1-1600
	1-1610
	1-1620
	1-1630
	1-1640
	1-1650
	1-1660
	1-1670
	1-1680
	1-1690
	1-1700
	1-1710
	1-1720
	1-1730
	1-1740
	1-1750
	1-1760
	1-1770
	1-1780
	1-1790
	1-1800
	1-1810
	1-1820
	1-1830
	1-1840
	1-1850
	1-1860
	1-1870
	1-1880
	1-1890
	1-1900
	1-1910
	1-1920
	1-1930
	1-1940
	1-1950
	1-1960
	1-1970
	1-1980
	1-1990
	1-2000
	1-2010
	1-2020
	1-2030
	1-2040
	1-2050
	1-2060
	1-2070
	1-2080
	1-2090
	1-2100
	1-2110
	1-2120
	1-2130
	1-2140
	1-2150
	1-2160
	1-2170
	1-2180
	1-2190
	1-2200
	1-2210
	1-2220
	1-2230
	1-2240
	1-2250
	1-2260
	1-2270
	1-2280
	1-2290
	1-2300
	1-2310
	1-2320
	1-2330
	1-2340

